You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
matching_dependency/tfile.py

49 lines
1.6 KiB

import multiprocessing
import time
import numpy as np
import pandas as pd
import torch
from tqdm import tqdm
from md_discovery.multi_process_infer_by_pairs import table_encode, inference_from_record_pairs
from md_discovery import tmp_discover
from settings import er_output_dir, similarity_threshold, target_attr, embedding_dict
def fuck(i):
i = i*i+1
if __name__ == '__main__':
start = time.time()
tp_single_tuple_path = er_output_dir + "tp_single_tuple.csv"
# tp_mds, tp_vio = inference_from_record_pairs(tp_single_tuple_path, similarity_threshold, target_attr)
tp_mds, tp_vio = tmp_discover.inference_from_record_pairs(tp_single_tuple_path, similarity_threshold, target_attr)
print(time.time()-start)
# li = [[[6, 6, 2],
# [2, 4, 6],
# [2, 4, 7],
# [3, 6, 4]],
# [[6, 2, 7],
# [3, 2, 4],
# [5, 3, 5],
# [6, 2, 4]],
# [[7, 2, 2],
# [6, 3, 2],
# [6, 4, 3],
# [6, 5, 6]]]
# tensor = torch.Tensor(li)
# norm_tensor = torch.nn.functional.normalize(tensor, dim=2)
# print(norm_tensor, '\n')
# sim_ten = torch.matmul(norm_tensor, norm_tensor.transpose(1, 2))
# print(sim_ten/2 + 0.5, '\n')
# print(sim_ten.size())
# multiprocessing.set_start_method("spawn")
# manager = multiprocessing.Manager()
# lock = manager.Lock()
# pool = multiprocessing.Pool(16)
# with manager:
# for _ in tqdm(range(0, 1000)):
# result = pool.apply_async(fuck, args=(_,))
# print(result)