You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
matching_dependency/multi_process_infer_by_pair...

174 lines
5.9 KiB

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

import multiprocessing
import pandas as pd
import Levenshtein
import copy
conf_thresh = 0.8
def my_Levenshtein_ratio(str1, str2):
return 1 - Levenshtein.distance(str1, str2) / max(len(str1), len(str2))
def if_minimal(md, md_list, target_col):
# 假设这个md是minimal
minimal = True
for _ in md_list:
if _ != md:
# 假设列表中每一个md都使当前md不minimal
exist = True
# 如果左边任何一个大于,则假设不成立
for col in list(set(_.keys()) - {target_col}):
if _[col] > md[col]:
exist = False
# 如果右边小于,假设也不成立
if _[target_col] < md[target_col]:
exist = False
# 任何一次假设成立当前md不minimal
if exist:
minimal = False
break
return minimal
def remove_by_confidence(md, l, relation, target_col, lock):
support, confidence = get_one_md_metadata(md, relation, target_col)
# todo: replace constant 0.8
if confidence < 0.8:
with lock:
l.remove(md)
# def remove_by_confidence(md, l, relation, target_col):
# boolean, conf = satisfy_confidence(md, relation, 0.8, target_col)
# if not boolean:
# l.remove(md)
# print(md, '\t', conf)
def inference_from_record_pairs(path, threshold, target_col):
data = pd.read_csv(path, low_memory=False, encoding='ISO-8859-1')
data = data.astype(str)
columns = data.columns.values.tolist()
md_list = []
minimal_vio = []
init_md = {}
for col in columns:
init_md[col] = 1 if col == target_col else 0
md_list.append(init_md)
for row1 in data.itertuples():
# 获取当前行的索引,从后一行开始切片
i = row1[0]
data1 = data[i + 1:]
for row2 in data1.itertuples():
violated_mds = []
# sims是两行的相似度
sims = {}
for col in columns:
similarity = my_Levenshtein_ratio(getattr(row1, col), getattr(row2, col))
sims[col] = similarity
# 寻找violated md,从md列表中删除并加入vio列表
for md in md_list:
lhs_satis = True
rhs_satis = True
for col in list(set(columns) - {target_col}):
if sims[col] < md[col]:
lhs_satis = False
if sims[target_col] < md[target_col]:
rhs_satis = False
if lhs_satis == True and rhs_satis == False:
md_list.remove(md)
violated_mds.append(md)
minimal_vio.extend(violated_mds)
for vio_md in violated_mds:
# 特殊化右侧,我们需要右侧百分百相似,其实不需要降低右侧阈值
# if sims[target_col] >= threshold:
# new_rhs = sims[target_col]
# spec_r_md = copy.deepcopy(vio_md)
# spec_r_md[target_col] = new_rhs
# if if_minimal(spec_r_md, md_list, target_col):
# md_list.append(spec_r_md)
# 特殊化左侧
for col in list(set(columns) - {target_col}):
if sims[col] + 0.001 <= 1:
spec_l_md = copy.deepcopy(vio_md)
spec_l_md[col] = threshold if sims[col] < threshold else sims[col] + 0.001
if if_minimal(spec_l_md, md_list, target_col):
md_list.append(spec_l_md)
for vio in minimal_vio:
if not if_minimal(vio, md_list, target_col):
minimal_vio.remove(vio)
manager = multiprocessing.Manager()
lock = manager.Lock()
if len(minimal_vio) == 0:
return [], []
pool = multiprocessing.Pool(len(minimal_vio))
tmp = copy.deepcopy(minimal_vio)
with manager:
proxy_minimal_vio = manager.list(minimal_vio)
for _ in tmp:
pool.apply_async(remove_by_confidence, args=(_, proxy_minimal_vio, data, target_col, lock))
pool.close()
pool.join()
minimal_vio = list(proxy_minimal_vio)
for _ in tmp:
if not if_minimal(_, minimal_vio, target_col):
minimal_vio.remove(_)
return md_list, minimal_vio
def get_mds_metadata(md_list, dataset_path, target_col):
data = pd.read_csv(dataset_path, low_memory=False, encoding='ISO-8859-1')
data = data.astype(str)
manager = multiprocessing.Manager()
if len(md_list) == 0:
return []
pool = multiprocessing.Pool(len(md_list))
result = []
with manager:
for _ in md_list:
task = pool.apply_async(get_one_md_metadata, args=(_, data, target_col))
support, confidence = task.get()
result.append({"md": _, "support": support, "confidence": confidence})
pool.close()
pool.join()
return result
def get_one_md_metadata(md, dataframe, target_col):
support = 0
pre_confidence = 0
for row1 in dataframe.itertuples():
i = row1[0]
df_slice = dataframe[i + 1:]
for row2 in df_slice.itertuples():
left_satisfy = True
both_satisfy = True
for col in dataframe.columns.values.tolist():
sim = my_Levenshtein_ratio(getattr(row1, col), getattr(row2, col))
if col == target_col:
if sim < 1:
both_satisfy = False
else:
if sim < md[col]:
left_satisfy = False
both_satisfy = False
if left_satisfy:
support += 1
if both_satisfy:
pre_confidence += 1
confidence = 0 if support == 0 else pre_confidence / support
# return {"md": md, "support": support, "confidence": confidence}
return support, confidence