You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
149 lines
4.0 KiB
149 lines
4.0 KiB
import json
|
|
import multiprocessing
|
|
import os
|
|
import time
|
|
|
|
import ConfigSpace
|
|
import numpy as np
|
|
import pandas as pd
|
|
import torch
|
|
from tqdm import tqdm
|
|
from ConfigSpace.read_and_write import json as csj
|
|
from md_discovery import tmp_discover
|
|
from settings import er_output_dir, hpo_output_dir
|
|
|
|
|
|
def fuck(i):
|
|
i = i * i + 1
|
|
|
|
|
|
def test1():
|
|
li = [[[6, 6, 2],
|
|
[2, 4, 6],
|
|
[2, 4, 7],
|
|
[3, 6, 4]],
|
|
[[6, 2, 7],
|
|
[3, 2, 4],
|
|
[5, 3, 5],
|
|
[6, 2, 4]],
|
|
[[7, 2, 2],
|
|
[6, 3, 2],
|
|
[6, 4, 3],
|
|
[6, 5, 6]]]
|
|
tensor = torch.Tensor(li)
|
|
norm_tensor = torch.nn.functional.normalize(tensor, dim=2)
|
|
print(norm_tensor, '\n')
|
|
sim_ten = torch.matmul(norm_tensor, norm_tensor.transpose(1, 2))
|
|
print(sim_ten / 2 + 0.5, '\n')
|
|
print(sim_ten.size())
|
|
|
|
|
|
def test2():
|
|
multiprocessing.set_start_method("spawn")
|
|
manager = multiprocessing.Manager()
|
|
lock = manager.Lock()
|
|
pool = multiprocessing.Pool(16)
|
|
with manager:
|
|
for _ in tqdm(range(0, 1000)):
|
|
result = pool.apply_async(fuck, args=(_,))
|
|
print(result)
|
|
|
|
|
|
def test3():
|
|
dic = {'description': 0, 'id': 1, 'manufacturer': 0, 'name': 0.9309734582901001, 'price': 0.912541675567627}
|
|
ll = list(dic.values())
|
|
ten = torch.Tensor(ll)
|
|
t = ten.unsqueeze(1)
|
|
t = t.unsqueeze(2)
|
|
y = t.repeat(1, 742, 742)
|
|
print(ten)
|
|
print(y)
|
|
print(torch.isfinite(ten))
|
|
print(torch.count_nonzero(y).item())
|
|
|
|
|
|
def test4():
|
|
one_bool_tensor = torch.ones((3, 3, 3), dtype=torch.bool)
|
|
print(torch.count_nonzero(one_bool_tensor).item())
|
|
|
|
|
|
def test5():
|
|
ten1 = torch.tensor([[1, 2, 3],
|
|
[7, 8, 9]])
|
|
ten2 = torch.tensor([[4, 5, 6],
|
|
[11, 12, 15]])
|
|
result = ten1 * ten2
|
|
r = torch.sum(result, 1)
|
|
print('\n')
|
|
print(result)
|
|
print(r)
|
|
|
|
|
|
def test6():
|
|
table_tensor = torch.tensor([[[1., 2., 3.],
|
|
[4., 5., 6.],
|
|
[7., 8., 9.]],
|
|
[[1., 2., 3.],
|
|
[4., 5., 6.],
|
|
[7., 8., 9.]]])
|
|
t = torch.tensor([[1., 2., 3.],
|
|
[4., 5., 6.]])
|
|
norm1 = torch.nn.functional.normalize(table_tensor, dim=1)
|
|
norm2 = torch.nn.functional.normalize(table_tensor, dim=2)
|
|
print('\n')
|
|
print(norm1)
|
|
print(norm2)
|
|
print(t.shape)
|
|
|
|
|
|
def test7():
|
|
iterations = 1
|
|
filename_list = os.listdir(er_output_dir)
|
|
if len(filename_list) > 0:
|
|
for _ in filename_list:
|
|
if _.startswith('eval_result'):
|
|
iterations = int(_[12:13]) + 1
|
|
print(iterations)
|
|
|
|
|
|
def test8():
|
|
with open(hpo_output_dir + "configspace.json", 'r') as load_f:
|
|
dict_configspace = json.load(load_f)
|
|
str_configspace = json.dumps(dict_configspace)
|
|
configspace = csj.read(str_configspace)
|
|
|
|
|
|
def test9():
|
|
df = pd.read_json(r'./datasets/t.json', encoding='ISO-8859-1', lines=True)
|
|
df.to_csv(r'./datasets/s.csv')
|
|
d = pd.read_csv(r'./datasets/s.csv', encoding='ISO-8859-1')
|
|
print(1)
|
|
|
|
|
|
def test10():
|
|
rtable = pd.read_csv(r'E:\Data\Research\Projects\matching_dependency\datasets\DBLP-GoogleScholar\tableB.csv',
|
|
encoding='ISO-8859-1')
|
|
rtable.columns = ["id", "title", "authors", "venue", "year"]
|
|
rtable.to_csv(r'E:\Data\Research\Projects\matching_dependency\datasets\DBLP-GoogleScholar\tableB.csv',
|
|
sep=',', index=False, header=True, quoting=1)
|
|
|
|
|
|
def test11():
|
|
values = {
|
|
'block_attr': 'class',
|
|
'confidence_thresh': 0.2717823249253852,
|
|
'ml_blocker': 'attr_equiv',
|
|
'ml_matcher': 'ln',
|
|
'similarity_thresh': 0.20681820299103484,
|
|
'support_thresh': 129,
|
|
}
|
|
with open(hpo_output_dir + "incumbent.json", "w") as f:
|
|
json.dump(values, f, indent=4)
|
|
|
|
|
|
def test12():
|
|
with open(hpo_output_dir + "incumbent.json", 'r') as f:
|
|
dic = json.load(f)
|
|
for _ in dic.keys():
|
|
print(f'Key:{_}\tValue:{dic[_]}\tType:{type(dic[_])}')
|