|
|
import sys
|
|
|
|
|
|
from py_entitymatching.debugmatcher.debug_gui_utils import _get_metric
|
|
|
|
|
|
sys.path.append('/home/w/PycharmProjects/py_entitymatching/py_entitymatching')
|
|
|
|
|
|
import py_entitymatching as em
|
|
|
import py_entitymatching.catalog.catalog_manager as cm
|
|
|
import pandas as pd
|
|
|
import time
|
|
|
import six
|
|
|
from ConfigSpace import Configuration
|
|
|
from md_discovery.functions.multi_process_infer_by_pairs import my_Levenshtein_ratio
|
|
|
from entrance import *
|
|
|
from hpo.magellan_hpo import incumbent
|
|
|
|
|
|
|
|
|
def process_prediction_for_md_discovery(pred: pd.DataFrame, tp_single_tuple_path: str = "output/tp_single_tuple.csv", fn_single_tuple_path: str = "output/fn_single_tuple.csv"):
|
|
|
# 提取预测表中真阳和假阴部分
|
|
|
tp = pred[(pred['gold'] == 1) & (pred['predicted'] == 1)]
|
|
|
fn = pred[(pred['gold'] == 1) & (pred['predicted'] == 0)]
|
|
|
# 将真阳/假阴表中左右ID调整一致
|
|
|
for index, row in tp.iterrows():
|
|
|
tp.loc[index, "rtable_id"] = row["ltable_id"]
|
|
|
for index, row in fn.iterrows():
|
|
|
fn.loc[index, "rtable_id"] = row["ltable_id"]
|
|
|
|
|
|
pred_columns = pred.columns.values.tolist()
|
|
|
l_columns = []
|
|
|
r_columns = []
|
|
|
columns = []
|
|
|
# 将预测表中左表和右表字段名分别加入两个列表
|
|
|
for _ in pred_columns:
|
|
|
if _.startswith('ltable'):
|
|
|
l_columns.append(_)
|
|
|
elif _.startswith('rtable'):
|
|
|
r_columns.append(_)
|
|
|
# 将左表中字段名去掉前缀,作为统一的字段名列表(前提是两张表内对应字段名调整一致)
|
|
|
for _ in l_columns:
|
|
|
columns.append(_.replace('ltable_', ''))
|
|
|
|
|
|
# 将表拆分成左右两部分
|
|
|
tpl = tp[l_columns]
|
|
|
tpr = tp[r_columns]
|
|
|
# 将左右两部分字段名统一
|
|
|
tpl.columns = columns
|
|
|
tpr.columns = columns
|
|
|
|
|
|
fnl = fn[l_columns]
|
|
|
fnr = fn[r_columns]
|
|
|
fnl.columns = columns
|
|
|
fnr.columns = columns
|
|
|
|
|
|
tp_single_tuple = pd.concat([tpl, tpr])
|
|
|
fn_single_tuple = pd.concat([fnl, fnr])
|
|
|
|
|
|
tp_single_tuple.to_csv(tp_single_tuple_path, sep=',', index=False, header=True)
|
|
|
fn_single_tuple.to_csv(fn_single_tuple_path, sep=',', index=False, header=True)
|
|
|
|
|
|
|
|
|
def evaluate_prediction(df: pd.DataFrame, labeled_attr: str, predicted_attr: str, matching_number: int,
|
|
|
test_proportion: float) -> dict:
|
|
|
new_df = df.reset_index(drop=False, inplace=False)
|
|
|
gold = new_df[labeled_attr]
|
|
|
predicted = new_df[predicted_attr]
|
|
|
gold_negative = gold[gold == 0].index.values
|
|
|
gold_positive = gold[gold == 1].index.values
|
|
|
predicted_negative = predicted[predicted == 0].index.values
|
|
|
predicted_positive = predicted[predicted == 1].index.values
|
|
|
|
|
|
false_positive_indices = list(set(gold_negative).intersection(predicted_positive))
|
|
|
true_positive_indices = list(set(gold_positive).intersection(predicted_positive))
|
|
|
false_negative_indices = list(set(gold_positive).intersection(predicted_negative))
|
|
|
|
|
|
num_true_positives = float(len(true_positive_indices))
|
|
|
num_false_positives = float(len(false_positive_indices))
|
|
|
num_false_negatives = float(len(false_negative_indices))
|
|
|
|
|
|
precision_denominator = num_true_positives + num_false_positives
|
|
|
recall_denominator = num_true_positives + num_false_negatives
|
|
|
|
|
|
precision = 0.0 if precision_denominator == 0.0 else num_true_positives / precision_denominator
|
|
|
recall = 0.0 if recall_denominator == 0.0 else num_true_positives / recall_denominator
|
|
|
F1 = 0.0 if precision == 0.0 and recall == 0.0 else (2.0 * precision * recall) / (precision + recall)
|
|
|
my_recall = num_true_positives / (matching_number * test_proportion)
|
|
|
|
|
|
return {"precision": precision, "recall": recall, "F1": F1, "my_recall": my_recall}
|
|
|
|
|
|
|
|
|
def load_mds(paths: list) -> list:
|
|
|
if len(paths) == 0:
|
|
|
return []
|
|
|
all_mds = []
|
|
|
# 传入md路径列表
|
|
|
for md_path in paths:
|
|
|
mds = []
|
|
|
# 打开每一个md文件
|
|
|
with open(md_path, 'r') as f:
|
|
|
# 读取每一行的md,加入该文件的md列表
|
|
|
for line in f.readlines():
|
|
|
md_metadata = line.strip().split('\t')
|
|
|
md = eval(md_metadata[0].replace('md:', ''))
|
|
|
confidence = eval(md_metadata[2].replace('confidence:', ''))
|
|
|
if confidence > 0:
|
|
|
mds.append(md)
|
|
|
all_mds.extend(mds)
|
|
|
return all_mds
|
|
|
|
|
|
|
|
|
def is_explicable(row, all_mds: list) -> bool:
|
|
|
attrs = all_mds[0].keys() # 从第一条md中读取所有字段
|
|
|
for md in all_mds:
|
|
|
explicable = True # 假设这条md能解释当前元组
|
|
|
for a in attrs:
|
|
|
threshold = md[a]
|
|
|
if my_Levenshtein_ratio(str(getattr(row, 'ltable_'+a)), str(getattr(row, 'rtable_'+a))) < threshold:
|
|
|
explicable = False # 任意一个字段的相似度达不到阈值,这条md就不能解释当前元组
|
|
|
break # 不再与当前md的其他相似度阈值比较,跳转到下一条md
|
|
|
if explicable:
|
|
|
return True # 任意一条md能解释,直接返回
|
|
|
return False # 遍历结束,不能解释
|
|
|
|
|
|
|
|
|
def load_data(left_path: str, right_path: str, mapping_path: str):
|
|
|
left = pd.read_csv(left_path, encoding='ISO-8859-1')
|
|
|
cm.set_key(left, left.columns.values.tolist()[0])
|
|
|
left.fillna("", inplace=True)
|
|
|
left = left.astype(str)
|
|
|
|
|
|
right = pd.read_csv(right_path, encoding='ISO-8859-1')
|
|
|
cm.set_key(right, right.columns.values.tolist()[0])
|
|
|
right.fillna("", inplace=True)
|
|
|
right = right.astype(str)
|
|
|
|
|
|
mapping = pd.read_csv(mapping_path)
|
|
|
mapping = mapping.astype(str)
|
|
|
return left, right, mapping
|
|
|
|
|
|
|
|
|
def ml_er(config: Configuration):
|
|
|
# todo:
|
|
|
# if config is not None -> load configs
|
|
|
# else use default configs
|
|
|
# 1. block_attr
|
|
|
# 2. overlap_size
|
|
|
# 3. ml_matcher
|
|
|
# 4. ml_blocker
|
|
|
ltable = pd.read_csv(ltable_path, encoding='ISO-8859-1')
|
|
|
cm.set_key(ltable, ltable_id)
|
|
|
ltable.fillna("", inplace=True)
|
|
|
rtable = pd.read_csv(rtable_path, encoding='ISO-8859-1')
|
|
|
cm.set_key(rtable, rtable_id)
|
|
|
rtable.fillna("", inplace=True)
|
|
|
mappings = pd.read_csv(mapping_path)
|
|
|
|
|
|
# 仅保留两表中出现在映射表中的行,增大正样本比例
|
|
|
lid_mapping_list = []
|
|
|
rid_mapping_list = []
|
|
|
# 全部转为字符串
|
|
|
ltable = ltable.astype(str)
|
|
|
rtable = rtable.astype(str)
|
|
|
mappings = mappings.astype(str)
|
|
|
matching_number = len(mappings) # 所有阳性样本数,商品数据集应为1300
|
|
|
|
|
|
for index, row in mappings.iterrows():
|
|
|
lid_mapping_list.append(row[mapping_lid])
|
|
|
rid_mapping_list.append(row[mapping_rid])
|
|
|
|
|
|
selected_ltable = ltable[ltable[ltable_id].isin(lid_mapping_list)]
|
|
|
selected_ltable = selected_ltable.rename(columns=lr_attrs_map) # 参照右表,修改左表中与右表对应但不同名的字段
|
|
|
selected_rtable = rtable[rtable[rtable_id].isin(rid_mapping_list)]
|
|
|
selected_attrs = selected_ltable.columns.values.tolist() # 两张表中的字段名
|
|
|
attrs_with_l_prefix = ['ltable_'+i for i in selected_attrs]
|
|
|
attrs_with_r_prefix = ['rtable_'+i for i in selected_attrs]
|
|
|
cm.set_key(selected_ltable, ltable_id)
|
|
|
cm.set_key(selected_rtable, rtable_id)
|
|
|
|
|
|
blocker = em.OverlapBlocker()
|
|
|
candidate = blocker.block_tables(selected_ltable, selected_rtable, 'name', 'name',
|
|
|
l_output_attrs=selected_attrs, r_output_attrs=selected_attrs,
|
|
|
overlap_size=1, show_progress=False)
|
|
|
candidate['gold'] = 0
|
|
|
|
|
|
candidate_match_rows = []
|
|
|
for index, row in candidate.iterrows():
|
|
|
l_id = row['ltable_' + ltable_id]
|
|
|
map_row = mappings[mappings[mapping_lid] == l_id]
|
|
|
|
|
|
if map_row is not None:
|
|
|
r_id = map_row[mapping_rid]
|
|
|
for value in r_id:
|
|
|
if value == row['rtable_' + rtable_id]:
|
|
|
candidate_match_rows.append(row["_id"])
|
|
|
else:
|
|
|
continue
|
|
|
for row in candidate_match_rows:
|
|
|
candidate.loc[row, 'gold'] = 1
|
|
|
|
|
|
# 裁剪负样本,保持正负样本数量一致
|
|
|
candidate_mismatch = candidate[candidate['gold'] == 0]
|
|
|
candidate_match = candidate[candidate['gold'] == 1]
|
|
|
if len(candidate_mismatch) > len(candidate_match):
|
|
|
candidate_mismatch = candidate_mismatch.sample(n=len(candidate_match))
|
|
|
# 拼接正负样本
|
|
|
candidate_for_train_test = pd.concat([candidate_mismatch, candidate_match])
|
|
|
cm.set_key(candidate_for_train_test, '_id')
|
|
|
cm.set_fk_ltable(candidate_for_train_test, 'ltable_' + ltable_id)
|
|
|
cm.set_fk_rtable(candidate_for_train_test, 'rtable_' + rtable_id)
|
|
|
cm.set_ltable(candidate_for_train_test, selected_ltable)
|
|
|
cm.set_rtable(candidate_for_train_test, selected_rtable)
|
|
|
|
|
|
# 分为训练测试集
|
|
|
train_proportion = 0.7
|
|
|
test_proportion = 0.3
|
|
|
sets = em.split_train_test(candidate_for_train_test, train_proportion=0.7, random_state=0)
|
|
|
train_set = sets['train']
|
|
|
test_set = sets['test']
|
|
|
|
|
|
rf = em.RFMatcher(name='RF', random_state=0)
|
|
|
feature_table = em.get_features_for_matching(selected_ltable, selected_rtable, validate_inferred_attr_types=False)
|
|
|
|
|
|
train_feature_vecs = em.extract_feature_vecs(train_set,
|
|
|
feature_table=feature_table,
|
|
|
attrs_after=['gold'],
|
|
|
show_progress=False)
|
|
|
|
|
|
test_feature_vecs = em.extract_feature_vecs(test_set, feature_table=feature_table,
|
|
|
attrs_after=['ltable_name', 'ltable_description', 'ltable_manufacturer',
|
|
|
'ltable_price', 'rtable_name', 'rtable_description',
|
|
|
'rtable_manufacturer', 'rtable_price', 'gold'],
|
|
|
show_progress=False)
|
|
|
|
|
|
rf.fit(table=train_feature_vecs,
|
|
|
exclude_attrs=['_id', 'ltable_id', 'rtable_id', 'gold'],
|
|
|
target_attr='gold')
|
|
|
predictions = rf.predict(table=test_feature_vecs, exclude_attrs=['_id', 'ltable_id', 'rtable_id', 'ltable_name',
|
|
|
'ltable_description', 'ltable_manufacturer',
|
|
|
'ltable_price', 'rtable_name',
|
|
|
'rtable_description',
|
|
|
'rtable_manufacturer', 'rtable_price', 'gold'],
|
|
|
append=True, target_attr='predicted', inplace=False)
|
|
|
eval_result = em.eval_matches(predictions, 'gold', 'predicted')
|
|
|
em.print_eval_summary(eval_result)
|
|
|
indicators = evaluate_prediction(predictions, 'gold', 'predicted', matching_number, test_proportion)
|
|
|
print(indicators)
|
|
|
|
|
|
# 计算可解释性
|
|
|
################################################################################################################
|
|
|
predictions_attrs = []
|
|
|
predictions_attrs.extend(attrs_with_l_prefix)
|
|
|
predictions_attrs.extend(attrs_with_r_prefix)
|
|
|
predictions_attrs.extend(['gold', 'predicted'])
|
|
|
predictions = predictions[predictions_attrs]
|
|
|
|
|
|
epl_match = 0 # 可解释,预测match
|
|
|
nepl_mismatch = 0 # 不可解释,预测mismatch
|
|
|
p_md = "/home/w/A-New Folder/8.14/Goods Dataset/TP_md_list.txt"
|
|
|
p_vio = "/home/w/A-New Folder/8.14/Goods Dataset/TP_vio_list.txt"
|
|
|
md_paths: list = [p_md, p_vio]
|
|
|
md_list = load_mds(md_paths) # 从全局变量中读取所有的md
|
|
|
for row in predictions.itertuples():
|
|
|
if is_explicable(row, md_list):
|
|
|
if getattr(row, 'predicted') == 1:
|
|
|
epl_match += 1
|
|
|
else:
|
|
|
if getattr(row, 'predicted') == 0:
|
|
|
nepl_mismatch += 1
|
|
|
|
|
|
epl_ability = (epl_match + nepl_mismatch) / len(predictions)
|
|
|
################################################################################################################
|
|
|
process_prediction_for_md_discovery(predictions)
|
|
|
|
|
|
output_path = "output/eval_result" + str(time.time()) + ".txt"
|
|
|
with open(output_path, 'w') as f:
|
|
|
for key, value in six.iteritems(_get_metric(eval_result)):
|
|
|
f.write(key + " : " + value)
|
|
|
f.write('\n')
|
|
|
f.write('my_recall:' + str(indicators["my_recall"]))
|
|
|
f.write('\n')
|