You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
matching_dependency/hpo/er_model_hpo.py

84 lines
3.1 KiB

import json
from ConfigSpace import Categorical, Configuration, ConfigurationSpace, Integer, Float
from ConfigSpace.conditions import InCondition
from ConfigSpace.read_and_write import json as csj
import py_entitymatching.catalog.catalog_manager as cm
import pandas as pd
from smac import HyperparameterOptimizationFacade, Scenario
from settings import *
from ml_er.ml_entity_resolver import er_process
class Classifier:
@property
def configspace(self) -> ConfigurationSpace:
# Build Configuration Space which defines all parameters and their ranges
cs = ConfigurationSpace(seed=0)
ltable = pd.read_csv(ltable_path, encoding='ISO-8859-1')
selected_attrs = ltable.columns.values.tolist()
block_attr_items = selected_attrs[:]
block_attr_items.remove(ltable_id)
block_attr = Categorical("block_attr", block_attr_items)
ml_matcher = Categorical("ml_matcher", ["dt", "svm", "rf", "lg", "ln", "nb"], default="rf")
ml_blocker = Categorical("ml_blocker", ["over_lap", "attr_equiv"], default="over_lap")
similarity_thresh = Float("similarity_thresh", (0, 0.2), default=0.2)
support_thresh = Integer("support_thresh", (1, 5), default=1)
confidence_thresh = Float("confidence_thresh", (0.25, 0.5), default=0.25)
cs.add_hyperparameters([block_attr, ml_matcher, ml_blocker, similarity_thresh,
support_thresh, confidence_thresh])
return cs
def train(self, config: Configuration, seed: int = 0) -> float:
cm.del_catalog()
indicators = er_process(config)
return 1-indicators['performance']
def ml_er_hpo():
classifier = Classifier()
cs = classifier.configspace
str_configspace = csj.write(cs)
dict_configspace = json.loads(str_configspace)
with open(hpo_output_dir + "configspace.json", "w") as f:
json.dump(dict_configspace, f, indent=4)
scenario = Scenario(
cs,
deterministic=True,
n_trials=50, # We want to run max 50 trials (combination of config and seed)
walltime_limit=28800, # Max time limit in seconds (14400s = 4h)
n_workers=1
)
initial_design = HyperparameterOptimizationFacade.get_initial_design(scenario, n_configs=5)
smac = HyperparameterOptimizationFacade(
scenario,
classifier.train,
initial_design=initial_design,
overwrite=True, # If the run exists, we overwrite it; alternatively, we can continue from last state
)
incumbent = smac.optimize()
incumbent_cost = smac.validate(incumbent)
default = cs.get_default_configuration()
default_cost = smac.validate(default)
print(f"Default Cost: {default_cost}")
print(f"Incumbent Cost: {incumbent_cost}")
if incumbent_cost > default_cost:
incumbent = default
print(f"Updated Incumbent Cost: {default_cost}")
print(f"Optimized Configuration:{incumbent.values()}")
with open(hpo_output_dir + "incumbent.json", "w") as f:
json.dump(dict(incumbent), f, indent=4)
return incumbent
if __name__ == '__main__':
ml_er_hpo()