|
|
import json
|
|
|
import os
|
|
|
from time import time
|
|
|
|
|
|
import ConfigSpace
|
|
|
import pandas as pd
|
|
|
import torch
|
|
|
from ConfigSpace import Configuration
|
|
|
from ConfigSpace.read_and_write import json as csj
|
|
|
from pyjedai.clustering import UniqueMappingClustering
|
|
|
from tqdm import tqdm
|
|
|
|
|
|
from md_discovery.md_discover import md_discover
|
|
|
from settings import *
|
|
|
from pyjedai.datamodel import Data
|
|
|
from pyjedai.block_cleaning import BlockPurging
|
|
|
from pyjedai.block_cleaning import BlockFiltering
|
|
|
from pyjedai.matching import EntityMatching
|
|
|
from pyjedai.block_building import (
|
|
|
StandardBlocking,
|
|
|
QGramsBlocking,
|
|
|
ExtendedQGramsBlocking,
|
|
|
SuffixArraysBlocking,
|
|
|
ExtendedSuffixArraysBlocking,
|
|
|
)
|
|
|
from pyjedai.comparison_cleaning import (
|
|
|
WeightedEdgePruning,
|
|
|
WeightedNodePruning,
|
|
|
CardinalityEdgePruning,
|
|
|
CardinalityNodePruning,
|
|
|
BLAST,
|
|
|
ReciprocalCardinalityNodePruning,
|
|
|
ReciprocalWeightedNodePruning,
|
|
|
ComparisonPropagation
|
|
|
)
|
|
|
from pyjedai.clustering import *
|
|
|
|
|
|
|
|
|
def prepare_file_for_md_discovery(train: pd.DataFrame, t_single_tuple_path=er_output_dir + r"\t_single_tuple.csv"):
|
|
|
# 挑选出实际匹配的元组对
|
|
|
df = train[train['gold'] == '1']
|
|
|
# 将左表id赋值给右表
|
|
|
for index, row in df.iterrows():
|
|
|
df.loc[index, "rtable_" + rtable_id] = row["ltable_" + ltable_id]
|
|
|
|
|
|
train_columns = train.columns.values.tolist()
|
|
|
l_columns = []
|
|
|
r_columns = []
|
|
|
cols = []
|
|
|
# 左表和右表字段名分别加入两个列表
|
|
|
for _ in train_columns:
|
|
|
if _.startswith('ltable'):
|
|
|
l_columns.append(_)
|
|
|
elif _.startswith('rtable'):
|
|
|
r_columns.append(_)
|
|
|
# 将左表中字段名去掉前缀,作为统一的字段名列表(前提是两张表内对应字段名调整一致)
|
|
|
for _ in l_columns:
|
|
|
cols.append(_.replace('ltable_', ''))
|
|
|
|
|
|
ldf = df[l_columns]
|
|
|
rdf = df[r_columns]
|
|
|
ldf.columns = cols
|
|
|
rdf.columns = cols
|
|
|
t_single_tuple = pd.concat([ldf, rdf])
|
|
|
t_single_tuple = t_single_tuple.reset_index(drop=True)
|
|
|
|
|
|
t_single_tuple.to_csv(t_single_tuple_path, sep=',', index=False, header=True, quoting=1)
|
|
|
|
|
|
|
|
|
# 形成一个字典,key为字段名称,value为一维张量,记录了预测表中这一字段每行的左右属性的相似度
|
|
|
def build_col_pairs_sim_tensor_dict(predictions: pd.DataFrame):
|
|
|
predictions_attrs = predictions.columns.values.tolist()
|
|
|
col_tuple_list = []
|
|
|
for _ in predictions_attrs:
|
|
|
if _.startswith('ltable'):
|
|
|
left_index = predictions_attrs.index(_)
|
|
|
right_index = predictions_attrs.index(_.replace('ltable_', 'rtable_'))
|
|
|
col_tuple_list.append((left_index, right_index))
|
|
|
|
|
|
df = predictions.drop(columns=['gold', 'predicted', 'confidence'], inplace=False)
|
|
|
length = df.shape[0]
|
|
|
width = df.shape[1]
|
|
|
sentences = []
|
|
|
for col in range(0, width):
|
|
|
for row in range(0, length):
|
|
|
cell_value = df.values[row, col]
|
|
|
sentences.append(cell_value)
|
|
|
if len(sentences) == 0:
|
|
|
return {}
|
|
|
embedding = model.encode(sentences, convert_to_tensor=True, device="cuda")
|
|
|
split_embedding = torch.split(embedding, length, dim=0)
|
|
|
table_tensor = torch.stack(split_embedding, dim=0, out=None)
|
|
|
# prediction的归一化嵌入张量
|
|
|
norm_table_tensor = torch.nn.functional.normalize(table_tensor, dim=2)
|
|
|
sim_tensor_dict = {}
|
|
|
for col_tuple in col_tuple_list:
|
|
|
lattr_tensor = norm_table_tensor[col_tuple[0]]
|
|
|
rattr_tensor = norm_table_tensor[col_tuple[1]]
|
|
|
mul_tensor = lattr_tensor * rattr_tensor
|
|
|
sim_tensor = torch.sum(mul_tensor, 1)
|
|
|
sim_tensor = torch.round(sim_tensor, decimals=4)
|
|
|
sim_tensor_dict[predictions_attrs[col_tuple[0]].replace('ltable_', '')] = sim_tensor
|
|
|
return sim_tensor_dict
|
|
|
|
|
|
|
|
|
def load_mds(paths: list) -> list:
|
|
|
if len(paths) == 0:
|
|
|
return []
|
|
|
all_mds = []
|
|
|
# 传入md路径列表
|
|
|
for md_path in paths:
|
|
|
if not os.path.exists(md_path):
|
|
|
continue
|
|
|
mds = []
|
|
|
# 打开每一个md文件
|
|
|
with open(md_path, 'r') as f_:
|
|
|
# 读取每一行的md,加入该文件的md列表
|
|
|
for line in f_.readlines():
|
|
|
md_metadata = line.strip().split('\t')
|
|
|
# todo 如果MD文件的形式改了 这里也要改
|
|
|
md = eval(md_metadata[1])
|
|
|
mds.append(md)
|
|
|
all_mds.extend(mds)
|
|
|
return all_mds
|
|
|
|
|
|
|
|
|
def is_explicable(row, all_mds: list, st_dict):
|
|
|
attrs = all_mds[0][0].keys() # 从第一条md_tuple中的md字典中读取所有字段
|
|
|
for md_tuple in all_mds:
|
|
|
explicable = True # 假设这条md能解释当前元组
|
|
|
for a in attrs:
|
|
|
if a != target_attr:
|
|
|
if st_dict[a][row[0]].item() < md_tuple[0][a]:
|
|
|
explicable = False # 任意一个字段的相似度达不到阈值,这条md就不能解释当前元组
|
|
|
break # 不再与当前md的其他相似度阈值比较,跳转到下一条md
|
|
|
if explicable:
|
|
|
return md_tuple[2] # 任意一条md能解释,直接返回
|
|
|
return -1.0 # 遍历结束,不能解释
|
|
|
|
|
|
|
|
|
def er_process(config: Configuration):
|
|
|
print(f'\033[33mConfig: {config}\033[0m')
|
|
|
start = time()
|
|
|
ltable = pd.read_csv(ltable_path, sep='|', engine='python', na_filter=False)
|
|
|
rtable = pd.read_csv(rtable_path, sep='|', engine='python', na_filter=False)
|
|
|
mapping = pd.read_csv(mapping_path, sep='|', engine='python')
|
|
|
data = Data(dataset_1=ltable,
|
|
|
id_column_name_1=ltable_id,
|
|
|
dataset_2=rtable,
|
|
|
id_column_name_2=rtable_id,
|
|
|
ground_truth=mapping)
|
|
|
|
|
|
# clean data(optional)
|
|
|
data.clean_dataset(remove_stopwords=False,
|
|
|
remove_punctuation=False,
|
|
|
remove_numbers=False,
|
|
|
remove_unicodes=False)
|
|
|
|
|
|
# block building
|
|
|
blocker_name = config["jed_blocker"]
|
|
|
block_attribute = config["block_attr"]
|
|
|
match blocker_name:
|
|
|
case "Standard":
|
|
|
blocker = StandardBlocking()
|
|
|
case "QGrams":
|
|
|
blocker = QGramsBlocking()
|
|
|
case "ExtendedQG":
|
|
|
blocker = ExtendedQGramsBlocking()
|
|
|
case "SuffixArrays":
|
|
|
blocker = SuffixArraysBlocking()
|
|
|
case "ExtendedSA":
|
|
|
blocker = ExtendedSuffixArraysBlocking()
|
|
|
blocks = blocker.build_blocks(data, attributes_1=[block_attribute], attributes_2=[block_attribute])
|
|
|
|
|
|
# block purging(optional)
|
|
|
bp = BlockPurging()
|
|
|
cleaned_blocks = bp.process(blocks, data, tqdm_disable=False)
|
|
|
|
|
|
# block cleaning(optional)
|
|
|
bf = BlockFiltering(ratio=0.8) # todo what is ratio for?
|
|
|
filtered_blocks = bf.process(cleaned_blocks, data, tqdm_disable=False)
|
|
|
|
|
|
# Comparison Cleaning - Meta Blocking(optional)
|
|
|
pruning_method = config["meta_blocker"]
|
|
|
weighting_scheme_name = config["weighting_scheme"]
|
|
|
match pruning_method:
|
|
|
case "WEP":
|
|
|
meta_blocker = WeightedEdgePruning(weighting_scheme=weighting_scheme_name)
|
|
|
case "WNP":
|
|
|
meta_blocker = WeightedNodePruning(weighting_scheme=weighting_scheme_name)
|
|
|
case "CEP":
|
|
|
meta_blocker = CardinalityEdgePruning(weighting_scheme=weighting_scheme_name)
|
|
|
case "CNP":
|
|
|
meta_blocker = CardinalityNodePruning(weighting_scheme=weighting_scheme_name)
|
|
|
case "BLAST":
|
|
|
meta_blocker = BLAST(weighting_scheme=weighting_scheme_name)
|
|
|
case "RCNP":
|
|
|
meta_blocker = ReciprocalCardinalityNodePruning(weighting_scheme=weighting_scheme_name)
|
|
|
case "RWNP":
|
|
|
meta_blocker = ReciprocalWeightedNodePruning(weighting_scheme=weighting_scheme_name)
|
|
|
case "CP":
|
|
|
meta_blocker = ComparisonPropagation()
|
|
|
candidate_pairs_blocks = meta_blocker.process(blocks=filtered_blocks, data=data, tqdm_disable=True)
|
|
|
|
|
|
# entity matching
|
|
|
em = EntityMatching(
|
|
|
metric=config["matching_metric"],
|
|
|
tokenizer=config["matching_tokenizer"],
|
|
|
vectorizer=config["matching_vectorizer"],
|
|
|
qgram=3,
|
|
|
similarity_threshold=0.0
|
|
|
)
|
|
|
|
|
|
pairs_graph = em.predict(candidate_pairs_blocks, data, tqdm_disable=True)
|
|
|
# draw(pairs_graph)
|
|
|
|
|
|
# entity clustering
|
|
|
clusteror_name = config["clusteror_name"]
|
|
|
match clusteror_name:
|
|
|
case "CCC":
|
|
|
clusteror = ConnectedComponentsClustering()
|
|
|
case "UMC":
|
|
|
clusteror = UniqueMappingClustering()
|
|
|
case "EC":
|
|
|
clusteror = ExactClustering()
|
|
|
case "CenterC":
|
|
|
clusteror = CenterClustering()
|
|
|
case "BMC":
|
|
|
clusteror = BestMatchClustering()
|
|
|
case "MCC":
|
|
|
clusteror = MergeCenterClustering()
|
|
|
case "CC":
|
|
|
clusteror = CorrelationClustering()
|
|
|
case "CTC":
|
|
|
clusteror = CutClustering()
|
|
|
case "MCL":
|
|
|
clusteror = MarkovClustering()
|
|
|
case "KMAC":
|
|
|
clusteror = KiralyMSMApproximateClustering()
|
|
|
case "RSRC":
|
|
|
clusteror = RicochetSRClustering()
|
|
|
# 得到预测结果与评估指标
|
|
|
clusters = clusteror.process(pairs_graph, data, similarity_threshold=0.17)
|
|
|
matches_dataframe = clusteror.export_to_df(clusters)
|
|
|
matches_dataframe_path = er_output_dir + r'\matches_dataframe.csv'
|
|
|
matches_dataframe.to_csv(matches_dataframe_path, sep=',', index=False, header=True, quoting=1)
|
|
|
evaluation = clusteror.evaluate(clusters)
|
|
|
# evaluation.pop('True Positives')
|
|
|
# evaluation.pop('False Positives')
|
|
|
# evaluation.pop('True Negatives')
|
|
|
# evaluation.pop('False Negatives')
|
|
|
|
|
|
|
|
|
ltable = ltable.astype(str)
|
|
|
rtable = rtable.astype(str)
|
|
|
mapping = mapping.astype(str)
|
|
|
result_df = matches_dataframe.astype(str)
|
|
|
lcolumns_dict = {}
|
|
|
rcolumns_dict = {}
|
|
|
ltable_attrs = ltable.columns.values.tolist()
|
|
|
rtable_attrs = rtable.columns.values.tolist()
|
|
|
for _ in ltable_attrs:
|
|
|
lcolumns_dict[_] = 'ltable_' + _
|
|
|
for _ in rtable_attrs:
|
|
|
rcolumns_dict[_] = 'rtable_' + _
|
|
|
result_lid_list = result_df['id1'].tolist()
|
|
|
selected_ltable = ltable[ltable[ltable_id].isin(result_lid_list)]
|
|
|
selected_ltable = selected_ltable.rename(columns=lcolumns_dict)
|
|
|
selected_ltable['key'] = 1
|
|
|
result_rid_list = result_df['id2'].tolist()
|
|
|
selected_rtable = rtable[rtable[rtable_id].isin(result_rid_list)]
|
|
|
selected_rtable = selected_rtable.rename(columns=rcolumns_dict)
|
|
|
selected_rtable['key'] = 1
|
|
|
predictions = pd.merge(selected_ltable, selected_rtable, on='key')
|
|
|
predictions.drop(columns='key', inplace=True)
|
|
|
predictions = predictions.reset_index(drop=True)
|
|
|
|
|
|
predictions['gold'] = '0'
|
|
|
predictions['predicted'] = '0'
|
|
|
gold_match_rows = []
|
|
|
predicted_match_rows = []
|
|
|
for tuple_ in tqdm(predictions.itertuples()):
|
|
|
lid = getattr(tuple_, 'ltable_' + ltable_id)
|
|
|
map_row = mapping[mapping[mapping_lid] == lid]
|
|
|
result_row = result_df[result_df['id1'] == lid]
|
|
|
if map_row is not None:
|
|
|
rid = map_row[mapping_rid]
|
|
|
for value in rid:
|
|
|
if value == getattr(tuple_, 'rtable_' + rtable_id):
|
|
|
gold_match_rows.append(tuple_[0])
|
|
|
if result_row is not None:
|
|
|
rid = result_row['id2']
|
|
|
for value in rid:
|
|
|
if value == getattr(tuple_, 'rtable_' + rtable_id):
|
|
|
predicted_match_rows.append(tuple_[0])
|
|
|
for _ in gold_match_rows:
|
|
|
predictions.loc[_, 'gold'] = '1'
|
|
|
for _ in predicted_match_rows:
|
|
|
predictions.loc[_, 'predicted'] = '1'
|
|
|
|
|
|
# 挖MD 计算可解释性
|
|
|
prepare_file_for_md_discovery(predictions)
|
|
|
predictions['confidence'] = 0
|
|
|
predicted_match = predictions[predictions['predicted'] == '1']
|
|
|
predicted_match = predicted_match.reset_index(drop=True)
|
|
|
sim_tensor_dict = build_col_pairs_sim_tensor_dict(predicted_match)
|
|
|
|
|
|
md_discover(config, er_output_dir + r"\t_single_tuple.csv", md_output_dir + r"\mds.txt")
|
|
|
md_paths = [md_output_dir + r'\mds.txt']
|
|
|
md_list = load_mds(md_paths) # 从全局变量中读取所有的md
|
|
|
epl_match = 0 # 可解释,预测match
|
|
|
|
|
|
if sim_tensor_dict:
|
|
|
if len(md_list) > 0:
|
|
|
for row in tqdm(predicted_match.itertuples()):
|
|
|
x = is_explicable(row, md_list, sim_tensor_dict)
|
|
|
if x > 0:
|
|
|
predicted_match.loc[row[0], 'confidence'] = x
|
|
|
epl_match += 1
|
|
|
interpretability = epl_match / len(predicted_match) # 可解释性
|
|
|
evaluation['interpretability'] = interpretability
|
|
|
else:
|
|
|
interpretability = 0
|
|
|
evaluation['interpretability'] = interpretability
|
|
|
f1 = evaluation['F1 %'] / 100
|
|
|
performance = interpre_weight * interpretability + (1 - interpre_weight) * f1
|
|
|
evaluation['performance'] = performance
|
|
|
print(f'\033[33mEvaluation: {evaluation}\033[0m')
|
|
|
predicted_match.to_csv(er_output_dir + r'\predicted_match.csv', sep=',', index=False, header=True)
|
|
|
################################################################################################################
|
|
|
print(f'\033[33mTime consumed by ML-ER in seconds: {time() - start}\033[0m')
|
|
|
|
|
|
return evaluation
|
|
|
|
|
|
|
|
|
def ml_er(config: Configuration = None):
|
|
|
indicators = er_process(config)
|
|
|
output_path = er_output_dir + r"\eval_result.txt"
|
|
|
with open(output_path, 'w') as f_:
|
|
|
for key, value in indicators:
|
|
|
f_.write(key + " : " + value)
|
|
|
f_.write('\n')
|
|
|
|
|
|
|
|
|
# if __name__ == '__main__':
|
|
|
# if os.path.isfile(hpo_output_dir + r"\incumbent.json"):
|
|
|
# with open(hpo_output_dir + r"\configspace.json", 'r') as f:
|
|
|
# dict_configspace = json.load(f)
|
|
|
# str_configspace = json.dumps(dict_configspace)
|
|
|
# configspace = csj.read(str_configspace)
|
|
|
# with open(hpo_output_dir + r"\incumbent.json", 'r') as f:
|
|
|
# dic = json.load(f)
|
|
|
# configuration = ConfigSpace.Configuration(configspace, values=dic)
|
|
|
# ml_er(configuration)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
with open(hpo_output_dir + r"\configspace.json", 'r') as f:
|
|
|
dict_configspace = json.load(f)
|
|
|
str_configspace = json.dumps(dict_configspace)
|
|
|
configspace = csj.read(str_configspace)
|
|
|
with open(hpo_output_dir + r"\fuck.json", 'r') as f:
|
|
|
dic = json.load(f)
|
|
|
configuration = ConfigSpace.Configuration(configspace, values=dic)
|
|
|
ml_er(configuration)
|