diff --git a/.gitignore b/.gitignore new file mode 100644 index 0000000..af5d226 --- /dev/null +++ b/.gitignore @@ -0,0 +1 @@ +/md_discovery/output/mds.txt diff --git a/README.md b/README.md deleted file mode 100644 index 1407ac6..0000000 --- a/README.md +++ /dev/null @@ -1,2 +0,0 @@ -# md_bayesian_er_deepmatcher - diff --git a/hpo/__init__.py b/hpo/__init__.py new file mode 100644 index 0000000..e69de29 diff --git a/hpo/deepmatcher_hpo.py b/hpo/deepmatcher_hpo.py new file mode 100644 index 0000000..c7db9c2 --- /dev/null +++ b/hpo/deepmatcher_hpo.py @@ -0,0 +1,84 @@ +import json +from ConfigSpace import Categorical, Configuration, ConfigurationSpace, Integer, Float +from ConfigSpace.conditions import InCondition, EqualsCondition, AndConjunction +from ConfigSpace.read_and_write import json as csj +from smac import Scenario, HyperparameterOptimizationFacade + +from ml_er.deepmatcher_er import matching +from setting import hpo_output_dir + + +class Optimization: + @property + def configspace(self) -> ConfigurationSpace: + cs = ConfigurationSpace(seed=0) + + attr_summarizer = Categorical('attr_summarizer', ['sif', 'rnn', 'attention', 'hybrid'], default='hybrid') + attr_comparator = Categorical('attr_comparator', ['concat', 'diff', 'abs-diff', 'concat-diff', 'concat-abs-diff', 'mul']) + word_contextualizer = Categorical('word_contextualizer', ['gru', 'lstm', 'rnn', 'self-attention']) + word_comparator = Categorical('word_comparator', ['decomposable-attention', 'general-attention', 'dot-attention']) + word_aggregator = Categorical('word_aggregator', ['avg-pool', 'divsqrt-pool', 'inv-freq-avg-pool', + 'sif-pool', 'max-pool', 'last-pool', 'last-simple-pool', + 'birnn-last-pool', 'birnn-last-simple-pool', 'attention-with-rnn']) + classifier_layers = Integer('classifier_layers', (1, 4)) + classifier_nonlinear = Categorical('classifier_nonlinear', ['leaky_relu', 'relu', 'elu', 'selu', 'glu', 'tanh', 'sigmoid']) + classifier_bypass = Categorical('classifier_bypass', ['residual', 'highway']) + embeddings = Categorical('embeddings', ['fasttext.en.bin', 'fasttext.wiki.vec', 'fasttext.crawl.vec', + 'glove.6B.300d', 'glove.42B.300d', 'glove.840B.300d']) + + cs.add_hyperparameters([attr_comparator, attr_summarizer, word_comparator, word_aggregator, word_contextualizer, + classifier_bypass, classifier_nonlinear, classifier_layers, embeddings]) + + return cs + + def train(self, config: Configuration, seed: int = 0) -> float: + indicators = matching(config) + return 1 - indicators['performance'] + + +def ml_er_hpo(): + optimization = Optimization() + cs = optimization.configspace + str_configspace = csj.write(cs) + dict_configspace = json.loads(str_configspace) + # 将超参数空间保存本地 + with open(hpo_output_dir + "configspace.json", "w") as f: + json.dump(dict_configspace, f, indent=4) + + scenario = Scenario( + cs, + crash_cost=1.0, + deterministic=True, + n_trials=20, + n_workers=1 + ) + + initial_design = HyperparameterOptimizationFacade.get_initial_design(scenario, n_configs=5) + + smac = HyperparameterOptimizationFacade( + scenario, + optimization.train, + initial_design=initial_design, + overwrite=True, # If the run exists, we overwrite it; alternatively, we can continue from last state + ) + + incumbent = smac.optimize() + incumbent_cost = smac.validate(incumbent) + default = cs.get_default_configuration() + default_cost = smac.validate(default) + print(f"Default Cost: {default_cost}") + print(f"Incumbent Cost: {incumbent_cost}") + + if incumbent_cost > default_cost: + incumbent = default + print(f"Updated Incumbent Cost: {default_cost}") + + print(f"Optimized Configuration:{incumbent.values()}") + + with open(hpo_output_dir + "incumbent.json", "w") as f: + json.dump(dict(incumbent), f, indent=4) + return incumbent + + +if __name__ == '__main__': + ml_er_hpo() diff --git a/md_discovery/__init__.py b/md_discovery/__init__.py new file mode 100644 index 0000000..e69de29 diff --git a/md_discovery/md_mining.py b/md_discovery/md_mining.py new file mode 100644 index 0000000..56010f1 --- /dev/null +++ b/md_discovery/md_mining.py @@ -0,0 +1,221 @@ +import itertools +import pickle +import random +import operator +from operator import itemgetter + +import pandas as pd +import torch +import matplotlib.pyplot as plt +from torch import LongTensor +import torch.nn.functional +from tqdm import tqdm + +from setting import * + + +# note 对表进行嵌入时定位了有空值的cell, 计算相似度时有空值则置为-1.0000 +def mining(train: pd.DataFrame): + # data is train set, in which each row represents a tuple pair + train = train.astype(str) + train = pd.concat([train, pd.DataFrame({'label': train.pop('label')})], axis=1) + + # 尝试不将左右表key手动调整相同,而是只看gold属性是否为1 + # 故将左右表key直接去除 + data = train.drop(columns=['_id', 'ltable_id', 'rtable_id'], inplace=False) + # data中现存属性:除key以外左右表属性和gold, 不含_id + columns = data.columns.values.tolist() + columns_without_prefix = [_.replace('ltable_', '') for _ in columns if _.startswith('ltable_')] + + # 列表, 每个元素为二元组, 包含对应列的索引 + col_tuple_list = build_col_tuple_list(columns) + + length = data.shape[0] + width = data.shape[1] + + # 嵌入data每一个cell, 纵向遍历 + # note 此处已重设索引 + data = data.reset_index(drop=True) + sentences = data.values.flatten(order='F').tolist() + embedding = model.encode(sentences, convert_to_tensor=True, device="cuda", batch_size=256, show_progress_bar=True) + + split_embedding = torch.split(embedding, length, dim=0) + table_tensor = torch.stack(split_embedding, dim=0, out=None) + norm_table_tensor = torch.nn.functional.normalize(table_tensor, dim=2) + + # sim_tensor_dict = {} + sim_tensor_list = [] + for col_tuple in col_tuple_list: + mask = ((data[columns[col_tuple[0]]].isin([''])) | (data[columns[col_tuple[1]]].isin(['']))) + empty_string_indices = data[mask].index.tolist() # 空字符串索引 + + lattr_tensor = norm_table_tensor[col_tuple[0]] + rattr_tensor = norm_table_tensor[col_tuple[1]] + mul_tensor = lattr_tensor * rattr_tensor + sim_tensor = torch.sum(mul_tensor, 1) # 求和得到对应属性2列张量相似度, 2列变1列 + # 将有空字符串的位置强制置为-1.0000 + sim_tensor = sim_tensor.scatter(0, torch.tensor(empty_string_indices, device='cuda').long(), -1.0000) + sim_tensor = torch.round(sim_tensor * 100) / 100 + sim_tensor_list.append(sim_tensor.unsqueeze(1)) + # sim_tensor_dict[columns[col_tuple[0]].replace('ltable_', '')] = sim_tensor + sim_table_tensor = torch.cat(sim_tensor_list, dim=1) + + # 创建一个1列的tensor,长度与相似度张量相同,先初始化为全0 + label_tensor = torch.zeros((sim_table_tensor.size(0), 1), device='cuda') + # 生成带标签的相似度张量 + sim_table_tensor_labeled = torch.cat((sim_table_tensor, label_tensor), 1) + # 找到匹配元组对的行索引 + mask = (data['label'].isin(['1'])) + match_pair_indices = data[mask].index.tolist() + # 根据索引将匹配的行标签置为1 + sim_table_tensor_labeled[match_pair_indices, -1] = 1.00 + + sorted_unique_value_tensor_list = [] + for _ in range(len(col_tuple_list)): + # 将sim_table_tensor每一列的值从小到大排列,加入列表 + sorted_unique_value_tensor = torch.sort(sim_table_tensor[:, _].unique()).values + # 将每一列可能的相似度取值中小于0的都删掉 + sorted_unique_value_tensor = sorted_unique_value_tensor[sorted_unique_value_tensor >= 0] + sorted_unique_value_tensor_list.append(sorted_unique_value_tensor) + + # 随机生成候选MD, 形成一个二维张量, 每一行代表一个候选MD + candidate_mds_tensor = build_candidate_md_matrix(sorted_unique_value_tensor_list) + result_list = [] + # 遍历每一个MD + for _ in tqdm(range(candidate_mds_tensor.shape[0])): + # 对每一个MD加一个0.5的标记, 意为match + md_tensor_labeled = torch.cat((candidate_mds_tensor[_], torch.tensor([0.5], device='cuda')), 0) + abs_support, confidence = get_metrics(md_tensor_labeled, sim_table_tensor_labeled) + if abs_support >= support_threshold and confidence >= confidence_threshold: + md_list_format = [round(i, 2) for i in candidate_mds_tensor[_].tolist()] + md_dict_format = {} + for k in range(0, len(columns_without_prefix)): + md_dict_format[columns_without_prefix[k]] = md_list_format[k] + result_list.append((md_dict_format, abs_support, confidence)) + # result_list.sort(key=itemgetter(2), reverse=True) + # 按confidence->support的优先级排序 + result_list.sort(key=itemgetter(2, 1), reverse=True) + result_list = merge_mds(result_list) + result_list.sort(key=itemgetter(2, 1), reverse=True) + # 保存到本地 + mds_to_txt(result_list) + return result_list + + +def build_col_tuple_list(columns_): + col_tuple_list_ = [] + for _ in columns_: + if _.startswith('ltable'): + left_index = columns_.index(_) + right_index = columns_.index(_.replace('ltable_', 'rtable_')) + col_tuple_list_.append((left_index, right_index)) + return col_tuple_list_ + + +def get_metrics(md_tensor_labeled_, sim_table_tensor_labeled_): + table_tensor_length = sim_table_tensor_labeled_.size()[0] + # MD原本为列向量, 转置为行向量 + md_tensor_labeled_2d = md_tensor_labeled_.unsqueeze(1).transpose(0, 1) + # 沿行扩展1倍(不扩展), 沿列扩展至与相似度表同样长 + md_tensor_labeled_2d = md_tensor_labeled_2d.repeat(table_tensor_length, 1) + # 去掉标签列, 判断每一行相似度是否大于等于MD要求, 该张量行数与sim_table_tensor_labeled_相同, 少一列标签列 + support_tensor = torch.ge(sim_table_tensor_labeled_[:, :-1], md_tensor_labeled_2d[:, :-1]) + # 沿行方向判断support_tensor每一行是否都为True, 行数不变, 压缩为1列 + support_tensor = torch.all(support_tensor, dim=1, keepdim=True) + # 统计这个tensor中True的个数, 即为absolute support + abs_support_ = torch.sum(support_tensor).item() + + # 保留标签列, 判断每一行相似度是否大于等于MD要求 + support_tensor = torch.ge(sim_table_tensor_labeled_, md_tensor_labeled_2d) + # 统计既满足相似度要求也匹配的, abs_strict_support表示左右都满足的个数 + support_tensor = torch.all(support_tensor, dim=1, keepdim=True) + abs_strict_support_ = torch.sum(support_tensor).item() + # 计算confidence + confidence_ = abs_strict_support_ / abs_support_ if abs_support_ > 0 else 0 + return abs_support_, confidence_ + + +# 随机生成MD, 拼成一个矩阵, 每一行代表一条MD +def build_candidate_md_matrix(sorted_unique_value_tensor_list_: list): + # 假设先随机抽取20000条 + length_ = len(sorted_unique_value_tensor_list_) + N = 20000 + # 对于第一列所有相似度取值, 随机有放回地抽取N个, 生成行索引 + indices = torch.randint(0, len(sorted_unique_value_tensor_list_[0]), (N, 1)) + # 为每一列生成一个索引张量, 表示从相应列张量中随机选择的值的索引 + for _ in range(1, length_): + indices = torch.cat((indices, torch.randint(0, len(sorted_unique_value_tensor_list_[_]), (N, 1))), dim=1) + # 使用生成的索引从每个列相似度张量中选取值, 构成新的张量 + candidate_md_matrix_list = [] + for _ in range(length_): + candidate_md_matrix_list.append(sorted_unique_value_tensor_list_[_][indices[:, _].long()].unsqueeze(1)) + candidate_md_matrix_ = torch.cat(candidate_md_matrix_list, dim=1) + + # 此tensor将与其他置为-1的tensor拼接 + joint_candidate_md_matrix_ = candidate_md_matrix_.clone() + # 随机将1列, 2列......, M-1列置为-1 + for i in range(length_ - 1): + index_list_format = [] + for j in range(candidate_md_matrix_.shape[0]): + # 对每条MD,随机选择将要置为-1的列索引 + index_list_format.append(random.sample([_ for _ in range(0, length_)], i + 1)) + index = torch.tensor(index_list_format, device='cuda') + # 随机调整为-1后的MD集合 + modified_candidate = candidate_md_matrix_.scatter(1, index, -1) + joint_candidate_md_matrix_ = torch.cat((joint_candidate_md_matrix_, modified_candidate), 0) + joint_candidate_md_matrix_ = joint_candidate_md_matrix_.unique(dim=0) + return joint_candidate_md_matrix_ + + +def mds_to_txt(result_list_): + p = md_output_dir + r"\mds.txt" + with open(p, 'w') as f: + for _ in result_list_: + f.write(f'MD: {str(_[0])}\tAbsolute Support: {str(_[1])}\tConfidence: {str(_[2])}') + f.write('\n') + + +# 合并一些MD +def merge_mds(md_list_): + # 创建一个空字典用于分组 + grouped_md_tuples = {} + # 遍历三元组并对它们进行分组 + for md_tuple in md_list_: + # 提取Support和Confidence的值作为字典的键 + key = (md_tuple[1], md_tuple[2]) + # 检查键是否已经存在于分组字典中 + if key in grouped_md_tuples: + # 如果存在,将三元组添加到对应的列表中 + grouped_md_tuples[key].append(md_tuple) + else: + # 如果不存在,创建一个新的键值对 + grouped_md_tuples[key] = [md_tuple] + # 不要键只要值 + # 一个二级列表, 每个子列表中MD tuple的support和confidence一样 + grouped_md_tuples = list(grouped_md_tuples.values()) + + for same_sc_list in grouped_md_tuples: + # 创建一个索引列表,用于标记需要删除的元组 + indices_to_remove = [] + # 获取元组列表的长度 + length = len(same_sc_list) + # 遍历元组列表,进行比较和删除操作 + for i in range(length): + for j in range(length): + # 比较两个元组的字典值 + if i != j and all(same_sc_list[i][0][key_] >= same_sc_list[j][0][key_] for key_ in same_sc_list[i][0]): + # 如果同组内一个MD的所有相似度阈值都大于等于另一个MD, 则前者可以删除 + indices_to_remove.append(i) + break # 由于列表大小会变化,跳出内层循环 + # 根据索引列表逆序删除元组,以避免在删除时改变列表大小 + for index in sorted(indices_to_remove, reverse=True): + del same_sc_list[index] + # 二级列表转一级列表 + return list(itertools.chain.from_iterable(grouped_md_tuples)) + + +if __name__ == '__main__': + _train = pd.read_csv(directory_path + r'\train_whole.csv') + result = mining(_train) + with open(md_output_dir + "mds.pickle", "wb") as file_: + pickle.dump(result, file_) diff --git a/ml_er/__init__.py b/ml_er/__init__.py new file mode 100644 index 0000000..e69de29 diff --git a/ml_er/deepmatcher_er.py b/ml_er/deepmatcher_er.py new file mode 100644 index 0000000..45a31b3 --- /dev/null +++ b/ml_er/deepmatcher_er.py @@ -0,0 +1,173 @@ +import json +import os +import pickle +import time + +import deepmatcher as dm +import torch +import pandas as pd +import ConfigSpace +from ConfigSpace import Configuration +from ConfigSpace.read_and_write import json as csj +import torch.nn.functional +from tqdm import tqdm + +from setting import * + + +def matching(config): + print(f'\033[33mConfig: {config}\033[0m') + start = time.time() + + with open(md_output_dir + "mds.pickle", "rb") as file: + md_list = pickle.load(file) + + train, valid, test = dm.data.process( + path=directory_path, + train='train_whole.csv', + validation='valid_whole.csv', + test='test_whole.csv', + use_magellan_convention=True, # 与Magellan命名风格相同 + embeddings=config['embeddings']) + + train_table = train.get_raw_table() + test_table = test.get_raw_table() + valid_table = valid.get_raw_table() + + attr_summarizer = config['attr_summarizer'] + if attr_summarizer == 'sif': + model_ = dm.MatchingModel( + attr_comparator=config['attr_comparator'], + classifier=str(config['classifier_layers']) + '-layer-' + config['classifier_bypass'] + '-' + config[ + 'classifier_nonlinear'], + attr_summarizer=dm.attr_summarizers.SIF(word_contextualizer=config['word_contextualizer'], + word_comparator=config['word_comparator'], + word_aggregator=config['word_aggregator'])) + elif attr_summarizer == 'rnn': + model_ = dm.MatchingModel( + attr_comparator=config['attr_comparator'], + classifier=str(config['classifier_layers']) + '-layer-' + config['classifier_bypass'] + '-' + config[ + 'classifier_nonlinear'], + attr_summarizer=dm.attr_summarizers.RNN(word_contextualizer=config['word_contextualizer'], + word_comparator=config['word_comparator'], + word_aggregator=config['word_aggregator'])) + elif attr_summarizer == 'attention': + model_ = dm.MatchingModel( + attr_comparator=config['attr_comparator'], + classifier=str(config['classifier_layers']) + '-layer-' + config['classifier_bypass'] + '-' + config[ + 'classifier_nonlinear'], + attr_summarizer=dm.attr_summarizers.Attention(word_contextualizer=config['word_contextualizer'], + word_comparator=config['word_comparator'], + word_aggregator=config['word_aggregator'])) + else: # 'hybrid' + model_ = dm.MatchingModel( + attr_comparator=config['attr_comparator'], + classifier=str(config['classifier_layers']) + '-layer-' + config['classifier_bypass'] + '-' + config[ + 'classifier_nonlinear'], + attr_summarizer=dm.attr_summarizers.Hybrid(word_contextualizer=config['word_contextualizer'], + word_comparator=config['word_comparator'], + word_aggregator=config['word_aggregator'])) + + model_.run_train( + train, + valid, + device='cuda', + epochs=10, + batch_size=16, + best_save_path=attr_summarizer + '_model.pth', + pos_neg_ratio=3) + + indicators = {} + f1_score = model_.run_eval(test, device='cuda') + indicators["F1"] = f1_score + + predictions = model_.run_prediction(test, device='cuda', output_attributes=True) + # predictions中没有predicted列, 根据match_score手动新增 deepmatcher在计算F1时的阈值为0.5 + predictions['predicted'] = predictions['match_score'].apply(lambda score: 1 if score >= 0.5 else 0) + # 目前predictions包含的属性:左右表全部属性+label+predicted+match_score+_id + sim_tensor_dict = build_col_pairs_sim_tensor_dict(predictions) + predictions['confidence'] = 0 + + epl_match = 0 # 可解释,预测match + if len(md_list) > 0: + for row in tqdm(predictions.itertuples()): + x = is_explicable(row, md_list, sim_tensor_dict) + if x > 0 and str(getattr(row, 'predicted')) == str(1): + predictions.loc[row[0], 'confidence'] = x + epl_match += 1 + + df = predictions[predictions['predicted'] == str(1)] + interpretability = epl_match / len(df) # 可解释性 + indicators['interpretability'] = interpretability + performance = interpre_weight * interpretability + (1 - interpre_weight) * indicators["F1"] + indicators['performance'] = performance + print(f'ER Indicators: {indicators}') + + predictions.to_csv(er_output_dir + r'\predictions.csv', sep=',', index=False, header=True) + print(f'\033[33mTime consumed by matching in seconds: {time.time() - start}\033[0m') + + return indicators + + +def build_col_pairs_sim_tensor_dict(predictions: pd.DataFrame): + predictions_attrs = predictions.columns.values.tolist() + col_tuple_list = [] + for _ in predictions_attrs: + if _.startswith('ltable'): + left_index = predictions_attrs.index(_) + right_index = predictions_attrs.index(_.replace('ltable_', 'rtable_')) + col_tuple_list.append((left_index, right_index)) + + length = predictions.shape[0] + # width = predictions.shape[1] + predictions = predictions.reset_index(drop=True) + sentences = predictions.values.flatten(order='F').tolist() + + embedding = model.encode(sentences, convert_to_tensor=True, device="cuda", batch_size=256, show_progress_bar=True) + split_embedding = torch.split(embedding, length, dim=0) + table_tensor = torch.stack(split_embedding, dim=0, out=None) + # prediction的归一化嵌入张量 + norm_table_tensor = torch.nn.functional.normalize(table_tensor, dim=2) + sim_tensor_dict = {} + for col_tuple in col_tuple_list: + lattr_tensor = norm_table_tensor[col_tuple[0]] + rattr_tensor = norm_table_tensor[col_tuple[1]] + mul_tensor = lattr_tensor * rattr_tensor + sim_tensor = torch.sum(mul_tensor, 1) + sim_tensor = torch.round(sim_tensor * 100) / 100 + sim_tensor_dict[predictions_attrs[col_tuple[0]].replace('ltable_', '')] = sim_tensor + return sim_tensor_dict + + +def is_explicable(row, all_mds: list, st_dict): + attrs = all_mds[0][0].keys() # 从第一条md_tuple中的md字典中读取所有字段 + for md_tuple in all_mds: + explicable = True # 假设这条md能解释当前元组 + for a in attrs: + if st_dict[a][row[0]].item() < md_tuple[0][a]: + explicable = False # 任意一个字段的相似度达不到阈值,这条md就不能解释当前元组 + break # 不再与当前md的其他相似度阈值比较,跳转到下一条md + if explicable: + return md_tuple[2] # 任意一条md能解释,直接返回 + return -1.0 # 遍历结束,不能解释 + + +def ml_er(config: Configuration): + indicators = matching(config) + output_path = er_output_dir + "eval_result.txt" + with open(output_path, 'w') as _f: + _f.write('F1:' + str(indicators["F1"]) + '\n') + _f.write('interpretability:' + str(indicators['interpretability']) + '\n') + _f.write('performance:' + str(indicators['performance']) + '\n') + + +if __name__ == '__main__': + if os.path.isfile(hpo_output_dir + "incumbent.json"): + with open(hpo_output_dir + "configspace.json", 'r') as f: + dict_configspace = json.load(f) + str_configspace = json.dumps(dict_configspace) + configspace = csj.read(str_configspace) + with open(hpo_output_dir + "incumbent.json", 'r') as f: + dic = json.load(f) + configuration = ConfigSpace.Configuration(configspace, values=dic) + ml_er(configuration) diff --git a/setting.py b/setting.py new file mode 100644 index 0000000..0f7b67c --- /dev/null +++ b/setting.py @@ -0,0 +1,12 @@ +from sentence_transformers import SentenceTransformer + +directory_path = r'E:\Data\Research\Datasets\DeepMatcher dataset\Textual\Abt-Buy' + +er_output_dir = r'E:\Data\Research\Projects\md_bayesian_er_deepmatcher\ml_er\output' +md_output_dir = r'E:\Data\Research\Projects\md_bayesian_er_deepmatcher\md_discovery\output' +hpo_output_dir = r'E:\Data\Research\Projects\md_bayesian_er_deepmatcher\hpo\output' + +model = SentenceTransformer('E:\\Data\\Research\\Models\\all-MiniLM-L6-v2') +interpre_weight = 0 # 可解释性权重 +support_threshold = 1 +confidence_threshold = 0.75 diff --git a/utils.py b/utils.py new file mode 100644 index 0000000..9516052 --- /dev/null +++ b/utils.py @@ -0,0 +1,29 @@ +# train/valid/test set中只有左右id映射, 该方法根据左右表以及id构建完整的set +import pandas as pd + +from setting import directory_path + + +def build_whole_X_set(X_set, _ltable, _rtable): + merged_set = pd.merge(X_set, _ltable, on='ltable_id', how='left') + merged_set = pd.merge(merged_set, _rtable, on='rtable_id', how='left') + merged_set.insert(0, '_id', range(len(merged_set))) + return merged_set + + +if __name__ == '__main__': + # 读入两张表, 加前缀 + ltable = pd.read_csv(directory_path + r'\tableA.csv', encoding='ISO-8859-1').rename(columns=lambda x: f'ltable_{x}') + rtable = pd.read_csv(directory_path + r'\tableB.csv', encoding='ISO-8859-1').rename(columns=lambda x: f'rtable_{x}') + + train = pd.read_csv(directory_path + r'\train.csv', encoding='ISO-8859-1') + valid = pd.read_csv(directory_path + r'\valid.csv', encoding='ISO-8859-1') + test = pd.read_csv(directory_path + r'\test.csv', encoding='ISO-8859-1') + + train = build_whole_X_set(train, ltable, rtable) + valid = build_whole_X_set(valid, ltable, rtable) + test = build_whole_X_set(test, ltable, rtable) + + train.to_csv(directory_path + r'\train_whole.csv', sep=',', index=False, header=True) + valid.to_csv(directory_path + r'\valid_whole.csv', sep=',', index=False, header=True) + test.to_csv(directory_path + r'\test_whole.csv', sep=',', index=False, header=True)