From 894b69e9a7693b2fa73b83baf0446b100e9fb2c2 Mon Sep 17 00:00:00 2001 From: HuangJintao <1447537163@qq.com> Date: Thu, 13 Jun 2024 11:39:09 +0800 Subject: [PATCH] new --- .gitignore | 0 __init__.py | 0 hpo/ditto_hpo.py | 93 ++++++++++++++++ md_discovery/md_mining.py | 224 ++++++++++++++++++++++++++++++++++++++ ml_er/ditto_er.py | 141 ++++++++++++++++++++++++ setting.py | 12 ++ 6 files changed, 470 insertions(+) create mode 100644 .gitignore create mode 100644 __init__.py create mode 100644 hpo/ditto_hpo.py create mode 100644 md_discovery/md_mining.py create mode 100644 ml_er/ditto_er.py create mode 100644 setting.py diff --git a/.gitignore b/.gitignore new file mode 100644 index 0000000..e69de29 diff --git a/__init__.py b/__init__.py new file mode 100644 index 0000000..e69de29 diff --git a/hpo/ditto_hpo.py b/hpo/ditto_hpo.py new file mode 100644 index 0000000..150832a --- /dev/null +++ b/hpo/ditto_hpo.py @@ -0,0 +1,93 @@ +import json +import time +from colorama import init, Fore +from ConfigSpace import Categorical, Configuration, ConfigurationSpace, Integer, Float +from ConfigSpace.conditions import InCondition, EqualsCondition, AndConjunction +from ConfigSpace.read_and_write import json as csj +from smac import Scenario, BlackBoxFacade + +from ml_er.ditto_er import matching +from setting import hpo_output_dir +import sys +sys.path.append('/root/hjt/md_bayesian_er_ditto/') + + +class Optimization: + @property + def configspace(self) -> ConfigurationSpace: + cs = ConfigurationSpace(seed=0) + + # task + # run_id + batch_size = Categorical('batch_size', [32, 64], default=64) + max_len = Categorical('max_len', [64, 128, 256], default=256) + # lr 3e-5 + # n_epochs 20 + # fine_tuning + # save_model + # logdir + lm = Categorical('language_model', ['distilbert', 'roberta', 'bert-base-uncased', 'xlnet-base-cased'], default='distilbert') + fp16 = Categorical('half_precision_float', [True, False]) + da = Categorical('data_augmentation', ['del', 'swap', 'drop_col', 'append_col', 'all']) + # alpha_aug + # dk + summarize = Categorical('summarize', [True, False]) + # size + + cs.add_hyperparameters([batch_size, max_len, lm, fp16, da, summarize]) + return cs + + # todo train函数 + def train(self, config: Configuration, seed: int = 0, ) -> float: + indicators = matching(config) + return 1 - indicators['performance'] + + +def ml_er_hpo(): + optimization = Optimization() + cs = optimization.configspace + str_configspace = csj.write(cs) + dict_configspace = json.loads(str_configspace) + # 将超参数空间保存本地 + with open(hpo_output_dir + r"\configspace.json", "w") as f: + json.dump(dict_configspace, f, indent=4) + + scenario = Scenario( + cs, + crash_cost=1.0, + deterministic=True, + n_trials=16, + n_workers=1 + ) + + initial_design = BlackBoxFacade.get_initial_design(scenario, n_configs=5) + + smac = BlackBoxFacade( + scenario, + optimization.train, + initial_design=initial_design, + overwrite=True, # If the run exists, we overwrite it; alternatively, we can continue from last state + ) + + incumbent = smac.optimize() + incumbent_cost = smac.validate(incumbent) + default = cs.get_default_configuration() + default_cost = smac.validate(default) + print(Fore.BLUE + f"Default Cost: {default_cost}") + print(Fore.BLUE + f"Incumbent Cost: {incumbent_cost}") + + if incumbent_cost > default_cost: + incumbent = default + print(Fore.RED + f'Updated Incumbent Cost: {default_cost}') + + print(Fore.BLUE + f"Optimized Configuration:{incumbent.values()}") + + with open(hpo_output_dir + r"\incumbent.json", "w") as f: + json.dump(dict(incumbent), f, indent=4) + return incumbent + + +if __name__ == '__main__': + init(autoreset=True) + print(Fore.CYAN + f'Start Time: {time.time()}') + ml_er_hpo() diff --git a/md_discovery/md_mining.py b/md_discovery/md_mining.py new file mode 100644 index 0000000..3f5df74 --- /dev/null +++ b/md_discovery/md_mining.py @@ -0,0 +1,224 @@ +import itertools +import pickle +import random +import operator +from operator import itemgetter + +import pandas as pd +import torch +import matplotlib.pyplot as plt +from torch import LongTensor +import torch.nn.functional +from tqdm import tqdm + +from setting import * +import sys +sys.path.append('/root/hjt/md_bayesian_er_ditto/') + + +# note 对表进行嵌入时定位了有空值的cell, 计算相似度时有空值则置为-1.0000 +def mining(train: pd.DataFrame): + # data is train set, in which each row represents a tuple pair + train = train.astype(str) + # 将label列移到最后 + train = pd.concat([train, pd.DataFrame({'label': train.pop('label')})], axis=1) + + # 尝试不将左右表key手动调整相同,而是只看gold属性是否为1 + # 故将左右表key直接去除 + data = train.drop(columns=['_id', 'ltable_id', 'rtable_id'], inplace=False) + # data中现存属性:除key以外左右表属性和gold, 不含_id + columns = data.columns.values.tolist() + columns_without_prefix = [_.replace('ltable_', '') for _ in columns if _.startswith('ltable_')] + + # 列表, 每个元素为二元组, 包含对应列的索引 + col_tuple_list = build_col_tuple_list(columns) + + length = data.shape[0] + width = data.shape[1] + + # 嵌入data每一个cell, 纵向遍历 + # note 此处已重设索引 + data = data.reset_index(drop=True) + sentences = data.values.flatten(order='F').tolist() + embedding = model.encode(sentences, convert_to_tensor=True, device="cuda", batch_size=256, show_progress_bar=True) + + split_embedding = torch.split(embedding, length, dim=0) + table_tensor = torch.stack(split_embedding, dim=0, out=None) + norm_table_tensor = torch.nn.functional.normalize(table_tensor, dim=2) + + # sim_tensor_dict = {} + sim_tensor_list = [] + for col_tuple in col_tuple_list: + mask = ((data[columns[col_tuple[0]]].isin([''])) | (data[columns[col_tuple[1]]].isin(['']))) + empty_string_indices = data[mask].index.tolist() # 空字符串索引 + + lattr_tensor = norm_table_tensor[col_tuple[0]] + rattr_tensor = norm_table_tensor[col_tuple[1]] + mul_tensor = lattr_tensor * rattr_tensor + sim_tensor = torch.sum(mul_tensor, 1) # 求和得到对应属性2列张量相似度, 2列变1列 + # 将有空字符串的位置强制置为-1.0000 + sim_tensor = sim_tensor.scatter(0, torch.tensor(empty_string_indices, device='cuda').long(), -1.0000) + sim_tensor = torch.round(sim_tensor * 100) / 100 + sim_tensor_list.append(sim_tensor.unsqueeze(1)) + # sim_tensor_dict[columns[col_tuple[0]].replace('ltable_', '')] = sim_tensor + sim_table_tensor = torch.cat(sim_tensor_list, dim=1) + + # 创建一个1列的tensor,长度与相似度张量相同,先初始化为全0 + label_tensor = torch.zeros((sim_table_tensor.size(0), 1), device='cuda') + # 生成带标签的相似度张量 + sim_table_tensor_labeled = torch.cat((sim_table_tensor, label_tensor), 1) + # 找到匹配元组对的行索引 + mask = (data['label'].isin(['1'])) + match_pair_indices = data[mask].index.tolist() + # 根据索引将匹配的行标签置为1 + sim_table_tensor_labeled[match_pair_indices, -1] = 1.00 + + sorted_unique_value_tensor_list = [] + for _ in range(len(col_tuple_list)): + # 将sim_table_tensor每一列的值从小到大排列,加入列表 + sorted_unique_value_tensor = torch.sort(sim_table_tensor[:, _].unique()).values + # 将每一列可能的相似度取值中小于0的都删掉 + sorted_unique_value_tensor = sorted_unique_value_tensor[sorted_unique_value_tensor >= 0] + sorted_unique_value_tensor_list.append(sorted_unique_value_tensor) + + # 随机生成候选MD, 形成一个二维张量, 每一行代表一个候选MD + candidate_mds_tensor = build_candidate_md_matrix(sorted_unique_value_tensor_list) + result_list = [] + # 遍历每一个MD + for _ in tqdm(range(candidate_mds_tensor.shape[0])): + # 对每一个MD加一个0.5的标记, 意为match + md_tensor_labeled = torch.cat((candidate_mds_tensor[_], torch.tensor([0.5], device='cuda')), 0) + abs_support, confidence = get_metrics(md_tensor_labeled, sim_table_tensor_labeled) + if abs_support >= support_threshold and confidence >= confidence_threshold: + md_list_format = [round(i, 2) for i in candidate_mds_tensor[_].tolist()] + md_dict_format = {} + for k in range(0, len(columns_without_prefix)): + md_dict_format[columns_without_prefix[k]] = md_list_format[k] + result_list.append((md_dict_format, abs_support, confidence)) + # result_list.sort(key=itemgetter(2), reverse=True) + # 按confidence->support的优先级排序 + result_list.sort(key=itemgetter(2, 1), reverse=True) + result_list = merge_mds(result_list) + result_list.sort(key=itemgetter(2, 1), reverse=True) + # 保存到本地 + mds_to_txt(result_list) + return result_list + + +def build_col_tuple_list(columns_): + col_tuple_list_ = [] + for _ in columns_: + if _.startswith('ltable'): + left_index = columns_.index(_) + right_index = columns_.index(_.replace('ltable_', 'rtable_')) + col_tuple_list_.append((left_index, right_index)) + return col_tuple_list_ + + +def get_metrics(md_tensor_labeled_, sim_table_tensor_labeled_): + table_tensor_length = sim_table_tensor_labeled_.size()[0] + # MD原本为列向量, 转置为行向量 + md_tensor_labeled_2d = md_tensor_labeled_.unsqueeze(1).transpose(0, 1) + # 沿行扩展1倍(不扩展), 沿列扩展至与相似度表同样长 + md_tensor_labeled_2d = md_tensor_labeled_2d.repeat(table_tensor_length, 1) + # 去掉标签列, 判断每一行相似度是否大于等于MD要求, 该张量行数与sim_table_tensor_labeled_相同, 少一列标签列 + support_tensor = torch.ge(sim_table_tensor_labeled_[:, :-1], md_tensor_labeled_2d[:, :-1]) + # 沿行方向判断support_tensor每一行是否都为True, 行数不变, 压缩为1列 + support_tensor = torch.all(support_tensor, dim=1, keepdim=True) + # 统计这个tensor中True的个数, 即为absolute support + abs_support_ = torch.sum(support_tensor).item() + + # 保留标签列, 判断每一行相似度是否大于等于MD要求 + support_tensor = torch.ge(sim_table_tensor_labeled_, md_tensor_labeled_2d) + # 统计既满足相似度要求也匹配的, abs_strict_support表示左右都满足的个数 + support_tensor = torch.all(support_tensor, dim=1, keepdim=True) + abs_strict_support_ = torch.sum(support_tensor).item() + # 计算confidence + confidence_ = abs_strict_support_ / abs_support_ if abs_support_ > 0 else 0 + return abs_support_, confidence_ + + +# 随机生成MD, 拼成一个矩阵, 每一行代表一条MD +def build_candidate_md_matrix(sorted_unique_value_tensor_list_: list): + # 假设先随机抽取20000条 + length_ = len(sorted_unique_value_tensor_list_) + N = 20000 + # 对于第一列所有相似度取值, 随机有放回地抽取N个, 生成行索引 + indices = torch.randint(0, len(sorted_unique_value_tensor_list_[0]), (N, 1)) + # 为每一列生成一个索引张量, 表示从相应列张量中随机选择的值的索引 + for _ in range(1, length_): + indices = torch.cat((indices, torch.randint(0, len(sorted_unique_value_tensor_list_[_]), (N, 1))), dim=1) + # 使用生成的索引从每个列相似度张量中选取值, 构成新的张量 + candidate_md_matrix_list = [] + for _ in range(length_): + candidate_md_matrix_list.append(sorted_unique_value_tensor_list_[_][indices[:, _].long()].unsqueeze(1)) + candidate_md_matrix_ = torch.cat(candidate_md_matrix_list, dim=1) + + # 此tensor将与其他置为-1的tensor拼接 + joint_candidate_md_matrix_ = candidate_md_matrix_.clone() + # 随机将1列, 2列......, M-1列置为-1 + for i in range(length_ - 1): + index_list_format = [] + for j in range(candidate_md_matrix_.shape[0]): + # 对每条MD,随机选择将要置为-1的列索引 + index_list_format.append(random.sample([_ for _ in range(0, length_)], i + 1)) + index = torch.tensor(index_list_format, device='cuda') + # 随机调整为-1后的MD集合 + modified_candidate = candidate_md_matrix_.scatter(1, index, -1) + joint_candidate_md_matrix_ = torch.cat((joint_candidate_md_matrix_, modified_candidate), 0) + joint_candidate_md_matrix_ = joint_candidate_md_matrix_.unique(dim=0) + return joint_candidate_md_matrix_ + + +def mds_to_txt(result_list_): + p = md_output_dir + r"/mds.txt" + with open(p, 'w') as f: + for _ in result_list_: + f.write(f'MD: {str(_[0])}\tAbsolute Support: {str(_[1])}\tConfidence: {str(_[2])}') + f.write('\n') + + +# 合并一些MD +def merge_mds(md_list_): + # 创建一个空字典用于分组 + grouped_md_tuples = {} + # 遍历三元组并对它们进行分组 + for md_tuple in md_list_: + # 提取Support和Confidence的值作为字典的键 + key = (md_tuple[1], md_tuple[2]) + # 检查键是否已经存在于分组字典中 + if key in grouped_md_tuples: + # 如果存在,将三元组添加到对应的列表中 + grouped_md_tuples[key].append(md_tuple) + else: + # 如果不存在,创建一个新的键值对 + grouped_md_tuples[key] = [md_tuple] + # 不要键只要值 + # 一个二级列表, 每个子列表中MD tuple的support和confidence一样 + grouped_md_tuples = list(grouped_md_tuples.values()) + + for same_sc_list in grouped_md_tuples: + # 创建一个索引列表,用于标记需要删除的元组 + indices_to_remove = [] + # 获取元组列表的长度 + length = len(same_sc_list) + # 遍历元组列表,进行比较和删除操作 + for i in range(length): + for j in range(length): + # 比较两个元组的字典值 + if i != j and all(same_sc_list[i][0][key_] >= same_sc_list[j][0][key_] for key_ in same_sc_list[i][0]): + # 如果同组内一个MD的所有相似度阈值都大于等于另一个MD, 则前者可以删除 + indices_to_remove.append(i) + break # 由于列表大小会变化,跳出内层循环 + # 根据索引列表逆序删除元组,以避免在删除时改变列表大小 + for index in sorted(indices_to_remove, reverse=True): + del same_sc_list[index] + # 二级列表转一级列表 + return list(itertools.chain.from_iterable(grouped_md_tuples)) + + +if __name__ == '__main__': + _train = pd.read_csv(directory_path + r'/train_whole.csv') + result = mining(_train) + with open(md_output_dir + r"/mds.pickle", "wb") as file_: + pickle.dump(result, file_) diff --git a/ml_er/ditto_er.py b/ml_er/ditto_er.py new file mode 100644 index 0000000..1f95098 --- /dev/null +++ b/ml_er/ditto_er.py @@ -0,0 +1,141 @@ +import pickle +import torch +import json +import numpy as np +import random +# from ditto.matcher import * +from setting import * +from colorama import Fore +from argparse import Namespace +import ConfigSpace +from ConfigSpace import Configuration +from ditto.matcher import set_seed, to_str, classify, predict, tune_threshold, load_model +from ConfigSpace.read_and_write import json as csj +from ditto.ditto_light.dataset import DittoDataset +from ditto.ditto_light.summarize import Summarizer +from ditto.ditto_light.knowledge import * +from ditto.ditto_light.ditto import train +import os +import sys + +os.environ["HF_ENDPOINT"] = "https://hf-mirror.com" +sys.path.append('/root/hjt/md_bayesian_er_ditto/') + + +def matching(config): + print(Fore.BLUE + f'Config: {config}') + + # with open(md_output_dir + r"\mds.pickle", "rb") as file: + # md_list = pickle.load(file) + + hp = Namespace() + hp.task = directory_path.replace('/root/hjt/DeepMatcher Dataset/', '') + hp.run_id = 0 + hp.batch_size = config['batch_size'] + hp.max_len = config['max_len'] + hp.lr = 3e-5 + hp.n_epochs = 20 + # hp.finetuning + hp.save_model = True + hp.input_path = '/root/autodl-tmp/input/candidates_small.jsonl' + hp.output_path = '/root/autodl-tmp/output/matched_small.jsonl' + hp.logdir = '/root/autodl-tmp/checkpoints/' + hp.checkpoint_path = '/root/autodl-tmp/checkpoints/' + hp.lm = config['language_model'] + hp.fp16 = config['half_precision_float'] + hp.da = config['data_augmentation'] + hp.alpha_aug = 0.8 + hp.dk = None + hp.summarize = config['summarize'] + hp.size = None + hp.use_gpu = True + + seed = hp.run_id + random.seed(seed) + np.random.seed(seed) + torch.manual_seed(seed) + if torch.cuda.is_available(): + torch.cuda.manual_seed_all(seed) + + # only a single task for baseline + task = hp.task + + # create the tag of the run + run_tag = '%s_lm=%s_da=%s_dk=%s_su=%s_size=%s_id=%d' % (task, hp.lm, hp.da, + hp.dk, hp.summarize, str(hp.size), hp.run_id) + run_tag = run_tag.replace('/', '_') + + # load task configuration + configs = json.load(open('configs.json')) + configs = {conf['name']: conf for conf in configs} + config = configs[task] + + trainset = config['trainset'] + validset = config['validset'] + testset = config['testset'] + + # summarize the sequences up to the max sequence length + if hp.summarize: + summarizer = Summarizer(config, lm=hp.lm) + trainset = summarizer.transform_file(trainset, max_len=hp.max_len) + validset = summarizer.transform_file(validset, max_len=hp.max_len) + testset = summarizer.transform_file(testset, max_len=hp.max_len) + + # load train/dev/test sets + train_dataset = DittoDataset(trainset, + lm=hp.lm, + max_len=hp.max_len, + size=hp.size, + da=hp.da) + valid_dataset = DittoDataset(validset, lm=hp.lm) + test_dataset = DittoDataset(testset, lm=hp.lm) + + # train and evaluate the model + train(train_dataset, + valid_dataset, + test_dataset, + run_tag, hp) + + set_seed(123) + config, model = load_model(hp.task, hp.checkpoint_path, + hp.lm, hp.use_gpu, hp.fp16) + + summarizer = dk_injector = None + if hp.summarize: + summarizer = Summarizer(config, hp.lm) + + # tune threshold + threshold = tune_threshold(config, model, hp) + + # run prediction + predict(hp.input_path, hp.output_path, config, model, + summarizer=summarizer, + max_len=hp.max_len, + lm=hp.lm, + dk_injector=dk_injector, + threshold=threshold) + # todo indicators + # write results + # interpretability + + +# todo ml_er function +def ml_er(config: Configuration): + indicators = matching(config) + output_path = er_output_dir + r"\eval_result.txt" + with open(output_path, 'w') as _f: + _f.write('F1:' + str(indicators["F1"]) + '\n') + _f.write('interpretability:' + str(indicators['interpretability']) + '\n') + _f.write('performance:' + str(indicators['performance']) + '\n') + + +if __name__ == '__main__': + if os.path.isfile(hpo_output_dir + r"\incumbent.json"): + with open(hpo_output_dir + r"\configspace.json", 'r') as f: + dict_configspace = json.load(f) + str_configspace = json.dumps(dict_configspace) + configspace = csj.read(str_configspace) + with open(hpo_output_dir + r"\incumbent.json", 'r') as f: + dic = json.load(f) + configuration = ConfigSpace.Configuration(configspace, values=dic) + ml_er(configuration) diff --git a/setting.py b/setting.py new file mode 100644 index 0000000..797df41 --- /dev/null +++ b/setting.py @@ -0,0 +1,12 @@ +from sentence_transformers import SentenceTransformer + +directory_path = '/root/hjt/DeepMatcher Dataset/Structured/Amazon-Google' + +er_output_dir = '/root/hjt/md_bayesian_er_ditto/ml_er/output' +md_output_dir = '/root/hjt/md_bayesian_er_ditto/md_discovery/output' +hpo_output_dir = '/root/hjt/md_bayesian_er_ditto/hpo/output' + +# model = SentenceTransformer('/root/hjt/all-MiniLM-L6-v2') +interpre_weight = 0 # 可解释性权重 +support_threshold = 1 +confidence_threshold = 0.75