import sys sys.path.append('/root/hjt/md_bayesian_er_ditto/') import json import time from colorama import init, Fore from ConfigSpace import Categorical, Configuration, ConfigurationSpace, Integer, Float from ConfigSpace.conditions import InCondition, EqualsCondition, AndConjunction from ConfigSpace.read_and_write import json as csj from smac import Scenario, BlackBoxFacade from ml_er.ditto_er import matching from setting import hpo_output_dir class Optimization: @property def configspace(self) -> ConfigurationSpace: cs = ConfigurationSpace(seed=0) # task # run_id batch_size = Categorical('batch_size', [32, 64], default=64) max_len = Categorical('max_len', [64, 128, 256], default=256) # lr 3e-5 # n_epochs 20 # fine_tuning # save_model # logdir lm = Categorical('language_model', ['distilbert', 'roberta', 'bert-base-uncased', 'xlnet-base-cased'], default='distilbert') fp16 = Categorical('half_precision_float', [True, False]) da = Categorical('data_augmentation', ['del', 'swap', 'drop_col', 'append_col', 'all']) # alpha_aug # dk summarize = Categorical('summarize', [True, False]) # size cs.add_hyperparameters([batch_size, max_len, lm, fp16, da, summarize]) return cs # todo train函数 def train(self, hpo_config: Configuration, seed: int = 0, ) -> float: indicators = matching(hpo_config) return 1 - indicators['performance'] def ml_er_hpo(): optimization = Optimization() cs = optimization.configspace str_configspace = csj.write(cs) dict_configspace = json.loads(str_configspace) # 将超参数空间保存本地 with open(hpo_output_dir + "/configspace.json", "w") as f: json.dump(dict_configspace, f, indent=4) scenario = Scenario( cs, crash_cost=1.0, deterministic=True, n_trials=16, n_workers=1 ) initial_design = BlackBoxFacade.get_initial_design(scenario, n_configs=5) smac = BlackBoxFacade( scenario, optimization.train, initial_design=initial_design, overwrite=True, # If the run exists, we overwrite it; alternatively, we can continue from last state ) incumbent = smac.optimize() incumbent_cost = smac.validate(incumbent) default = cs.get_default_configuration() default_cost = smac.validate(default) print(Fore.BLUE + f"Default Cost: {default_cost}") print(Fore.BLUE + f"Incumbent Cost: {incumbent_cost}") if incumbent_cost > default_cost: incumbent = default print(Fore.RED + f'Updated Incumbent Cost: {default_cost}') print(Fore.BLUE + f"Optimized Configuration:{incumbent.values()}") with open(hpo_output_dir + "/incumbent.json", "w") as f: json.dump(dict(incumbent), f, indent=4) return incumbent if __name__ == '__main__': init(autoreset=True) print(Fore.CYAN + f'Start Time: {time.time()}') ml_er_hpo()