import os import sys os.environ["HF_ENDPOINT"] = "https://hf-mirror.com" sys.path.append('/root/hjt/md_bayesian_er_ditto/') import pdb import pickle import torch import json import numpy as np import random from setting import * from colorama import Fore from argparse import Namespace import ConfigSpace from ConfigSpace import Configuration from ditto.matcher import set_seed, predict, tune_threshold, load_model from ConfigSpace.read_and_write import json as csj from ditto.ditto_light.dataset import DittoDataset from ditto.ditto_light.summarize import Summarizer from ditto.ditto_light.knowledge import * from ditto.ditto_light.ditto import train def matching(hpo_config): print(Fore.BLUE + f'Config: {hpo_config}') with open(md_output_dir + "/mds.pickle", "rb") as file: md_list = pickle.load(file) hp = Namespace() hp.task = directory_path.replace('/root/hjt/DeepMatcher Dataset/', '') # only a single task for baseline task = hp.task # load task configuration configs = json.load(open('../ditto/configs.json')) configs = {conf['name']: conf for conf in configs} config = configs[task] config['trainset'] = '/root/hjt/md_bayesian_er_ditto/ditto/' + config['trainset'] config['validset'] = '/root/hjt/md_bayesian_er_ditto/ditto/' + config['validset'] config['testset'] = '/root/hjt/md_bayesian_er_ditto/ditto/' + config['testset'] trainset = config['trainset'] validset = config['validset'] testset = config['testset'] hp.run_id = 0 hp.batch_size = hpo_config['batch_size'] hp.max_len = hpo_config['max_len'] hp.lr = 3e-5 hp.n_epochs = 20 # hp.finetuning hp.save_model = True hp.input_path = config['testset'] hp.output_path = '/root/autodl-tmp/output/matched_small.jsonl' hp.logdir = '/root/autodl-tmp/checkpoints/' hp.checkpoint_path = '/root/autodl-tmp/checkpoints/' hp.lm = hpo_config['language_model'] hp.fp16 = hpo_config['half_precision_float'] hp.da = hpo_config['data_augmentation'] hp.alpha_aug = 0.8 hp.dk = None hp.summarize = hpo_config['summarize'] hp.size = None hp.use_gpu = True seed = hp.run_id random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) if torch.cuda.is_available(): torch.cuda.manual_seed_all(seed) # create the tag of the run run_tag = '%s_lm=%s_da=%s_dk=%s_su=%s_size=%s_id=%d' % (task, hp.lm, hp.da, hp.dk, hp.summarize, str(hp.size), hp.run_id) run_tag = run_tag.replace('/', '_') # summarize the sequences up to the max sequence length if hp.summarize: summarizer = Summarizer(config, lm=hp.lm) trainset = summarizer.transform_file(trainset, max_len=hp.max_len) validset = summarizer.transform_file(validset, max_len=hp.max_len) testset = summarizer.transform_file(testset, max_len=hp.max_len) # load train/dev/test sets train_dataset = DittoDataset(trainset, lm=hp.lm, max_len=hp.max_len, size=hp.size, da=hp.da) valid_dataset = DittoDataset(validset, lm=hp.lm) test_dataset = DittoDataset(testset, lm=hp.lm) # train and evaluate the model train(train_dataset, valid_dataset, test_dataset, run_tag, hp) set_seed(123) config, model = load_model(hp.task, hp.checkpoint_path, hp.lm, hp.use_gpu, hp.fp16) summarizer = dk_injector = None pdb.set_trace() if hp.summarize: summarizer = Summarizer(config, hp.lm) # tune threshold threshold = tune_threshold(config, model, hp) # run prediction predict(hp.input_path, hp.output_path, config, model, summarizer=summarizer, max_len=hp.max_len, lm=hp.lm, dk_injector=dk_injector, threshold=threshold) # todo indicators # write results # interpretability indicators = {} return indicators # todo ml_er function def ml_er(config: Configuration): indicators = matching(config) output_path = er_output_dir + "/eval_result.txt" with open(output_path, 'w') as _f: _f.write('F1:' + str(indicators["F1"]) + '\n') _f.write('interpretability:' + str(indicators['interpretability']) + '\n') _f.write('performance:' + str(indicators['performance']) + '\n') if __name__ == '__main__': if os.path.isfile(hpo_output_dir + "/incumbent.json"): with open(hpo_output_dir + "/configspace.json", 'r') as f: dict_configspace = json.load(f) str_configspace = json.dumps(dict_configspace) configspace = csj.read(str_configspace) with open(hpo_output_dir + "/incumbent.json", 'r') as f: dic = json.load(f) configuration = ConfigSpace.Configuration(configspace, values=dic) ml_er(configuration)