import os import sys import time os.environ["HF_ENDPOINT"] = "https://hf-mirror.com" sys.path.append('/root/hjt/md_bayesian_er_ditto/') import pdb import pickle import torch import json import numpy as np import pandas as pd import random from tqdm import tqdm from setting import * from colorama import Fore from argparse import Namespace import ConfigSpace from ConfigSpace import Configuration from ditto.matcher import set_seed, predict, tune_threshold, load_model from ConfigSpace.read_and_write import json as csj from ditto.ditto_light.dataset import DittoDataset from ditto.ditto_light.summarize import Summarizer from ditto.ditto_light.knowledge import * from ditto.ditto_light.ditto import train def matching(hpo_config): print(Fore.BLUE + f'Config: {hpo_config}') with open(md_output_dir + "/mds.pickle", "rb") as file: md_list = pickle.load(file) hp = Namespace() hp.task = directory_path.replace('/root/hjt/DeepMatcher Dataset/', '') # only a single task for baseline task = hp.task # load task configuration configs = json.load(open('../ditto/configs.json')) configs = {conf['name']: conf for conf in configs} config = configs[task] config['trainset'] = '/root/hjt/md_bayesian_er_ditto/ditto/' + config['trainset'] config['validset'] = '/root/hjt/md_bayesian_er_ditto/ditto/' + config['validset'] config['testset'] = '/root/hjt/md_bayesian_er_ditto/ditto/' + config['testset'] trainset = config['trainset'] validset = config['validset'] testset = config['testset'] hp.run_id = 0 hp.batch_size = hpo_config['batch_size'] hp.max_len = hpo_config['max_len'] hp.lr = 3e-5 # hp.n_epochs = 20 hp.n_epochs = 2 # hp.finetuning hp.save_model = True hp.input_path = config['testset'] hp.output_path = '/root/autodl-tmp/output/predictions.jsonl' hp.logdir = '/root/autodl-tmp/checkpoints/' hp.checkpoint_path = '/root/autodl-tmp/checkpoints/' hp.lm = hpo_config['language_model'] hp.fp16 = hpo_config['half_precision_float'] hp.da = hpo_config['data_augmentation'] hp.alpha_aug = 0.8 hp.dk = None hp.summarize = hpo_config['summarize'] hp.size = None hp.use_gpu = True seed = hp.run_id random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) if torch.cuda.is_available(): torch.cuda.manual_seed_all(seed) # create the tag of the run run_tag = '%s_lm=%s_da=%s_dk=%s_su=%s_size=%s_id=%d' % (task, hp.lm, hp.da, hp.dk, hp.summarize, str(hp.size), hp.run_id) run_tag = run_tag.replace('/', '_') # summarize the sequences up to the max sequence length if hp.summarize: summarizer = Summarizer(config, lm=hp.lm) trainset = summarizer.transform_file(trainset, max_len=hp.max_len) validset = summarizer.transform_file(validset, max_len=hp.max_len) testset = summarizer.transform_file(testset, max_len=hp.max_len) # load train/dev/test sets train_dataset = DittoDataset(trainset, lm=hp.lm, max_len=hp.max_len, size=hp.size, da=hp.da) valid_dataset = DittoDataset(validset, lm=hp.lm) test_dataset = DittoDataset(testset, lm=hp.lm) # train and evaluate the model train(train_dataset, valid_dataset, test_dataset, run_tag, hp) set_seed(123) config, model = load_model(hp.task, hp.checkpoint_path, hp.lm, hp.use_gpu, hp.fp16) summarizer = dk_injector = None if hp.summarize: summarizer = Summarizer(config, hp.lm) # tune threshold threshold = tune_threshold(config, model, hp) # run prediction predict(hp.input_path, hp.output_path, config, model, summarizer=summarizer, max_len=hp.max_len, lm=hp.lm, dk_injector=dk_injector, threshold=threshold) predictions_raw = pd.read_json(hp.output_path, encoding='ISO-8859-1', lines=True) predictions = pd.read_csv(directory_path + '/test_whole.csv', encoding='ISO-8859-1') predictions['predicted'] = predictions_raw['match'] indicators = evaluate_prediction(predictions, 'label', 'predicted') predictions.drop(columns='_id', inplace=True) predictions = predictions.reset_index(drop=True) predictions = predictions.astype(str) sim_tensor_dict = build_col_pairs_sim_tensor_dict(predictions) predictions['confidence'] = 0 predictions['md'] = '' epl_match = 0 # 可解释,预测match if len(md_list) > 0: for row in tqdm(predictions.itertuples()): if str(getattr(row, 'predicted')) == str(1): conf, md_dict = is_explicable(row, md_list, sim_tensor_dict) if conf > 0: predictions.loc[row[0], 'confidence'] = conf predictions.loc[row[0], 'md'] = str(md_dict) epl_match += 1 df = predictions[predictions['predicted'] == str(1)] interpretability = epl_match / len(df) # 可解释性 indicators['interpretability'] = interpretability performance = interpre_weight * interpretability + (1 - interpre_weight) * indicators["F1"] indicators['performance'] = performance print(Fore.BLUE + f'ER Indicators: {indicators}') predictions.to_csv(er_output_dir + '/predictions.csv', sep=',', index=False, header=True) print(Fore.CYAN + f'Finish Time: {time.time()}') return indicators def evaluate_prediction(prediction_: pd.DataFrame, labeled_attr: str, predicted_attr: str) -> dict: new_df = prediction_.reset_index(drop=False, inplace=False) gold = new_df[labeled_attr] predicted = new_df[predicted_attr] gold_negative = gold[gold == 0].index.values gold_positive = gold[gold == 1].index.values predicted_negative = predicted[predicted == 0].index.values predicted_positive = predicted[predicted == 1].index.values false_positive_indices = list(set(gold_negative).intersection(predicted_positive)) true_positive_indices = list(set(gold_positive).intersection(predicted_positive)) false_negative_indices = list(set(gold_positive).intersection(predicted_negative)) num_true_positives = float(len(true_positive_indices)) num_false_positives = float(len(false_positive_indices)) num_false_negatives = float(len(false_negative_indices)) precision_denominator = num_true_positives + num_false_positives recall_denominator = num_true_positives + num_false_negatives precision = 0.0 if precision_denominator == 0.0 else num_true_positives / precision_denominator recall = 0.0 if recall_denominator == 0.0 else num_true_positives / recall_denominator F1 = 0.0 if precision == 0.0 and recall == 0.0 else (2.0 * precision * recall) / (precision + recall) return {"precision": precision, "recall": recall, "F1": F1} def build_col_pairs_sim_tensor_dict(predictions: pd.DataFrame): predictions_attrs = predictions.columns.values.tolist() col_tuple_list = [] for _ in predictions_attrs: if _.startswith('ltable'): left_index = predictions_attrs.index(_) right_index = predictions_attrs.index(_.replace('ltable_', 'rtable_')) col_tuple_list.append((left_index, right_index)) length = predictions.shape[0] # width = predictions.shape[1] predictions = predictions.reset_index(drop=True) sentences = predictions.values.flatten(order='F').tolist() embedding = model.encode(sentences, convert_to_tensor=True, device="cuda", batch_size=256, show_progress_bar=True) split_embedding = torch.split(embedding, length, dim=0) table_tensor = torch.stack(split_embedding, dim=0, out=None) # prediction的归一化嵌入张量 norm_table_tensor = torch.nn.functional.normalize(table_tensor, dim=2) sim_tensor_dict = {} for col_tuple in col_tuple_list: lattr_tensor = norm_table_tensor[col_tuple[0]] rattr_tensor = norm_table_tensor[col_tuple[1]] mul_tensor = lattr_tensor * rattr_tensor sim_tensor = torch.sum(mul_tensor, 1) sim_tensor = torch.round(sim_tensor * 100) / 100 sim_tensor_dict[predictions_attrs[col_tuple[0]].replace('ltable_', '')] = sim_tensor return sim_tensor_dict def is_explicable(row, all_mds: list, st_dict): attrs = all_mds[0][0].keys() # 从第一条md_tuple中的md字典中读取所有字段 for md_tuple in all_mds: explicable = True # 假设这条md能解释当前元组 for a in attrs: if st_dict[a][row[0]].item() < md_tuple[0][a]: explicable = False # 任意一个字段的相似度达不到阈值,这条md就不能解释当前元组 break # 不再与当前md的其他相似度阈值比较,跳转到下一条md if explicable: return md_tuple[2], md_tuple[0] # 任意一条md能解释,直接返回 return -1.0, {} # 遍历结束,不能解释 def ml_er(config: Configuration): indicators = matching(config) output_path = er_output_dir + "/eval_result.txt" with open(output_path, 'w') as _f: _f.write('precision:' + str(indicators['precision']) + '\n') _f.write('recall:' + str(indicators['recall']) + '\n') _f.write('F1:' + str(indicators["F1"]) + '\n') _f.write('interpretability:' + str(indicators['interpretability']) + '\n') _f.write('performance:' + str(indicators['performance']) + '\n') if __name__ == '__main__': if os.path.isfile(hpo_output_dir + "/incumbent.json"): with open(hpo_output_dir + "/configspace.json", 'r') as f: dict_configspace = json.load(f) str_configspace = json.dumps(dict_configspace) configspace = csj.read(str_configspace) with open(hpo_output_dir + "/incumbent.json", 'r') as f: dic = json.load(f) configuration = ConfigSpace.Configuration(configspace, values=dic) ml_er(configuration)