You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

95 lines
3.0 KiB

import sys
sys.path.append('/root/hjt/md_bayesian_er_ditto/')
import json
import time
from colorama import init, Fore
from ConfigSpace import Categorical, Configuration, ConfigurationSpace, Integer, Float
from ConfigSpace.conditions import InCondition, EqualsCondition, AndConjunction
from ConfigSpace.read_and_write import json as csj
from smac import Scenario, BlackBoxFacade
from ml_er.ditto_er import matching
from setting import hpo_output_dir
class Optimization:
@property
def configspace(self) -> ConfigurationSpace:
cs = ConfigurationSpace(seed=0)
# task
# run_id
batch_size = Categorical('batch_size', [32, 64], default=64)
max_len = Categorical('max_len', [64, 128, 256], default=256)
# lr 3e-5
# n_epochs 20
# fine_tuning
# save_model
# logdir
lm = Categorical('language_model', ['distilbert', 'roberta', 'bert-base-uncased', 'xlnet-base-cased'], default='distilbert')
fp16 = Categorical('half_precision_float', [True, False])
da = Categorical('data_augmentation', ['del', 'swap', 'drop_col', 'append_col', 'all'])
# alpha_aug
# dk
summarize = Categorical('summarize', [True, False])
# size
cs.add_hyperparameters([batch_size, max_len, lm, fp16, da, summarize])
return cs
# todo train函数
def train(self, hpo_config: Configuration, seed: int = 0, ) -> float:
indicators = matching(hpo_config)
return 1 - indicators['performance']
def ml_er_hpo():
optimization = Optimization()
cs = optimization.configspace
str_configspace = csj.write(cs)
dict_configspace = json.loads(str_configspace)
# 将超参数空间保存本地
with open(hpo_output_dir + "/configspace.json", "w") as f:
json.dump(dict_configspace, f, indent=4)
scenario = Scenario(
cs,
crash_cost=1.0,
deterministic=True,
n_trials=16,
n_workers=1
)
initial_design = BlackBoxFacade.get_initial_design(scenario, n_configs=5)
smac = BlackBoxFacade(
scenario,
optimization.train,
initial_design=initial_design,
overwrite=True, # If the run exists, we overwrite it; alternatively, we can continue from last state
)
incumbent = smac.optimize()
incumbent_cost = smac.validate(incumbent)
default = cs.get_default_configuration()
default_cost = smac.validate(default)
print(Fore.BLUE + f"Default Cost: {default_cost}")
print(Fore.BLUE + f"Incumbent Cost: {incumbent_cost}")
if incumbent_cost > default_cost:
incumbent = default
print(Fore.RED + f'Updated Incumbent Cost: {default_cost}')
print(Fore.BLUE + f"Optimized Configuration:{incumbent.values()}")
with open(hpo_output_dir + "/incumbent.json", "w") as f:
json.dump(dict(incumbent), f, indent=4)
return incumbent
if __name__ == '__main__':
init(autoreset=True)
print(Fore.CYAN + f'Start Time: {time.time()}')
ml_er_hpo()