import argparse from model_ENET_SAD import ENet_SAD from utils.prob2lines import getLane from utils.transforms import * img_size = (800, 288) net = ENet_SAD(img_size, sad=False) mean = (0.485, 0.456, 0.406) std = (0.229, 0.224, 0.225) transform_img = Resize(img_size) transform_to_net = Compose(ToTensor(), Normalize(mean=mean, std=std)) def parse_args(): parser = argparse.ArgumentParser() parser.add_argument("--img_path", '-i', type=str, default=r"demo/demo.jpg", help="Path to demo image") parser.add_argument("--weight_path", '-w', type=str, default=r"exp1_best.pth", help="Path to model weights") args = parser.parse_args() return args def main(): ########## Begin ########## ########## End ########## if __name__ == "__main__": main()