You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

124 lines
3.9 KiB

import torch.nn as nn
import torch
import torch.nn.functional as F
from models.registry import NET
from .resnet import ResNetWrapper
from .decoder import BUSD, PlainDecoder
class RESA(nn.Module):
def __init__(self, cfg):
super(RESA, self).__init__()
self.iter = cfg.resa.iter
chan = cfg.resa.input_channel
fea_stride = cfg.backbone.fea_stride
self.height = cfg.img_height // fea_stride
self.width = cfg.img_width // fea_stride
self.alpha = cfg.resa.alpha
conv_stride = cfg.resa.conv_stride
for i in range(self.iter):
conv_vert1 = nn.Conv2d(
chan, chan, (1, conv_stride),
padding=(0, conv_stride//2), groups=1, bias=False)
conv_vert2 = nn.Conv2d(
chan, chan, (1, conv_stride),
padding=(0, conv_stride//2), groups=1, bias=False)
setattr(self, 'conv_d'+str(i), conv_vert1)
setattr(self, 'conv_u'+str(i), conv_vert2)
conv_hori1 = nn.Conv2d(
chan, chan, (conv_stride, 1),
padding=(conv_stride//2, 0), groups=1, bias=False)
conv_hori2 = nn.Conv2d(
chan, chan, (conv_stride, 1),
padding=(conv_stride//2, 0), groups=1, bias=False)
setattr(self, 'conv_r'+str(i), conv_hori1)
setattr(self, 'conv_l'+str(i), conv_hori2)
idx_d = (torch.arange(self.height) + self.height //
2**(self.iter - i)) % self.height
setattr(self, 'idx_d'+str(i), idx_d)
idx_u = (torch.arange(self.height) - self.height //
2**(self.iter - i)) % self.height
setattr(self, 'idx_u'+str(i), idx_u)
idx_r = (torch.arange(self.width) + self.width //
2**(self.iter - i)) % self.width
setattr(self, 'idx_r'+str(i), idx_r)
idx_l = (torch.arange(self.width) - self.width //
2**(self.iter - i)) % self.width
setattr(self, 'idx_l'+str(i), idx_l)
def forward(self, x):
x = x.clone()
for direction in ['d', 'u']:
for i in range(self.iter):
conv = getattr(self, 'conv_' + direction + str(i))
idx = getattr(self, 'idx_' + direction + str(i))
x.add_(self.alpha * F.relu(conv(x[..., idx, :])))
for direction in ['r', 'l']:
for i in range(self.iter):
conv = getattr(self, 'conv_' + direction + str(i))
idx = getattr(self, 'idx_' + direction + str(i))
x.add_(self.alpha * F.relu(conv(x[..., idx])))
return x
class ExistHead(nn.Module):
def __init__(self, cfg=None):
super(ExistHead, self).__init__()
self.cfg = cfg
self.dropout = nn.Dropout2d(0.1) # ???
self.conv8 = nn.Conv2d(128, cfg.num_classes, 1)
stride = cfg.backbone.fea_stride * 2
self.fc9 = nn.Linear(
int(cfg.num_classes * cfg.img_width / stride * cfg.img_height / stride), 128)
self.fc10 = nn.Linear(128, cfg.num_classes-1)
def forward(self, x):
x = self.dropout(x)
x = self.conv8(x)
x = F.softmax(x, dim=1)
x = F.avg_pool2d(x, 2, stride=2, padding=0)
x = x.view(-1, x.numel() // x.shape[0])
x = self.fc9(x)
x = F.relu(x)
x = self.fc10(x)
x = torch.sigmoid(x)
return x
@NET.register_module
class RESANet(nn.Module):
def __init__(self, cfg):
super(RESANet, self).__init__()
self.cfg = cfg
self.backbone = ResNetWrapper(cfg)
self.resa = RESA(cfg)
self.decoder = eval(cfg.decoder)(cfg)
self.heads = ExistHead(cfg)
def forward(self, batch):
fea = self.backbone(batch)
fea = self.resa(fea)
seg = self.decoder(fea)
exist = self.heads(fea)
output = {'seg': seg, 'exist': exist}
return output