import cv2 import numpy as np def getLane_tusimple(prob_map, y_px_gap, pts, thresh, resize_shape=None): """ Arguments: ---------- prob_map: prob map for single lane, np array size (h, w) resize_shape: reshape size target, (H, W) Return: ---------- coords: x coords bottom up every y_px_gap px, 0 for non-exist, in resized shape """ if resize_shape is None: resize_shape = prob_map.shape h, w = prob_map.shape H, W = resize_shape coords = np.zeros(pts) for i in range(pts): y = int((H - 10 - i * y_px_gap) * h / H) if y < 0: break line = prob_map[y, :] id = np.argmax(line) if line[id] > thresh: coords[i] = int(id / w * W) if (coords > 0).sum() < 2: coords = np.zeros(pts) return coords def prob2lines_tusimple(seg_pred, exist, resize_shape=None, smooth=True, y_px_gap=10, pts=None, thresh=0.3): """ Arguments: ---------- seg_pred: np.array size (5, h, w) resize_shape: reshape size target, (H, W) exist: list of existence, e.g. [0, 1, 1, 0] smooth: whether to smooth the probability or not y_px_gap: y pixel gap for sampling pts: how many points for one lane thresh: probability threshold Return: ---------- coordinates: [x, y] list of lanes, e.g.: [ [[9, 569], [50, 549]] ,[[630, 569], [647, 549]] ] """ if resize_shape is None: resize_shape = seg_pred.shape[1:] # seg_pred (5, h, w) _, h, w = seg_pred.shape H, W = resize_shape coordinates = [] if pts is None: pts = round(H / 2 / y_px_gap) seg_pred = np.ascontiguousarray(np.transpose(seg_pred, (1, 2, 0))) for i in range(4): prob_map = seg_pred[..., i + 1] if smooth: prob_map = cv2.blur(prob_map, (9, 9), borderType=cv2.BORDER_REPLICATE) if exist[i] > 0: coords = getLane_tusimple(prob_map, y_px_gap, pts, thresh, resize_shape) if (coords>0).sum() < 2: continue coordinates.append( [[coords[j], H - 10 - j * y_px_gap] if coords[j] > 0 else [-1, H - 10 - j * y_px_gap] for j in range(pts)]) return coordinates def getLane_CULane(prob_map, y_px_gap, pts, thresh, resize_shape=None): """ Arguments: ---------- prob_map: prob map for single lane, np array size (h, w) resize_shape: reshape size target, (H, W) Return: ---------- coords: x coords bottom up every y_px_gap px, 0 for non-exist, in resized shape """ if resize_shape is None: resize_shape = prob_map.shape h, w = prob_map.shape H, W = resize_shape coords = np.zeros(pts) for i in range(pts): y = int(h - i * y_px_gap / H * h - 1) if y < 0: break line = prob_map[y, :] id = np.argmax(line) if line[id] > thresh: coords[i] = int(id / w * W) if (coords > 0).sum() < 2: coords = np.zeros(pts) return coords def prob2lines_CULane(seg_pred, exist, resize_shape=None, smooth=True, y_px_gap=20, pts=None, thresh=0.3): """ Arguments: ---------- seg_pred: np.array size (5, h, w) resize_shape: reshape size target, (H, W) exist: list of existence, e.g. [0, 1, 1, 0] smooth: whether to smooth the probability or not y_px_gap: y pixel gap for sampling pts: how many points for one lane thresh: probability threshold Return: ---------- coordinates: [x, y] list of lanes, e.g.: [ [[9, 569], [50, 549]] ,[[630, 569], [647, 549]] ] """ if resize_shape is None: resize_shape = seg_pred.shape[1:] # seg_pred (5, h, w) _, h, w = seg_pred.shape H, W = resize_shape coordinates = [] if pts is None: pts = round(H / 2 / y_px_gap) seg_pred = np.ascontiguousarray(np.transpose(seg_pred, (1, 2, 0))) for i in range(4): prob_map = seg_pred[..., i + 1] if smooth: prob_map = cv2.blur(prob_map, (9, 9), borderType=cv2.BORDER_REPLICATE) if exist[i] > 0: coords = getLane_CULane(prob_map, y_px_gap, pts, thresh, resize_shape) if (coords>0).sum() < 2: continue coordinates.append([[coords[j], H - 1 - j * y_px_gap] for j in range(pts) if coords[j] > 0]) return coordinates