import torch, os, datetime import numpy as np from model.model import parsingNet from data.dataloader import get_train_loader from utils.dist_utils import dist_print, dist_tqdm, is_main_process, DistSummaryWriter from utils.factory import get_metric_dict, get_loss_dict, get_optimizer, get_scheduler from utils.metrics import MultiLabelAcc, AccTopk, Metric_mIoU, update_metrics, reset_metrics from utils.common import merge_config, save_model, cp_projects from utils.common import get_work_dir, get_logger import time def inference(net, data_label, use_aux): if use_aux: img, cls_label, seg_label = data_label img, cls_label, seg_label = img.cuda(), cls_label.long().cuda(), seg_label.long().cuda() cls_out, seg_out = net(img) return {'cls_out': cls_out, 'cls_label': cls_label, 'seg_out':seg_out, 'seg_label': seg_label} else: img, cls_label = data_label img, cls_label = img.cuda(), cls_label.long().cuda() cls_out = net(img) return {'cls_out': cls_out, 'cls_label': cls_label} def resolve_val_data(results, use_aux): results['cls_out'] = torch.argmax(results['cls_out'], dim=1) if use_aux: results['seg_out'] = torch.argmax(results['seg_out'], dim=1) return results def calc_loss(loss_dict, results, logger, global_step): loss = 0 for i in range(len(loss_dict['name'])): data_src = loss_dict['data_src'][i] datas = [results[src] for src in data_src] loss_cur = loss_dict['op'][i](*datas) if global_step % 20 == 0: logger.add_scalar('loss/'+loss_dict['name'][i], loss_cur, global_step) loss += loss_cur * loss_dict['weight'][i] return loss def train(net, data_loader, loss_dict, optimizer, scheduler,logger, epoch, metric_dict, use_aux): net.train() progress_bar = dist_tqdm(train_loader) t_data_0 = time.time() for b_idx, data_label in enumerate(progress_bar): t_data_1 = time.time() reset_metrics(metric_dict) global_step = epoch * len(data_loader) + b_idx t_net_0 = time.time() results = inference(net, data_label, use_aux) loss = calc_loss(loss_dict, results, logger, global_step) optimizer.zero_grad() loss.backward() optimizer.step() scheduler.step(global_step) t_net_1 = time.time() results = resolve_val_data(results, use_aux) update_metrics(metric_dict, results) if global_step % 20 == 0: for me_name, me_op in zip(metric_dict['name'], metric_dict['op']): logger.add_scalar('metric/' + me_name, me_op.get(), global_step=global_step) logger.add_scalar('meta/lr', optimizer.param_groups[0]['lr'], global_step=global_step) if hasattr(progress_bar,'set_postfix'): kwargs = {me_name: '%.3f' % me_op.get() for me_name, me_op in zip(metric_dict['name'], metric_dict['op'])} progress_bar.set_postfix(loss = '%.3f' % float(loss), data_time = '%.3f' % float(t_data_1 - t_data_0), net_time = '%.3f' % float(t_net_1 - t_net_0), **kwargs) t_data_0 = time.time() if __name__ == "__main__": torch.backends.cudnn.benchmark = True args, cfg = merge_config() work_dir = get_work_dir(cfg) distributed = False if 'WORLD_SIZE' in os.environ: distributed = int(os.environ['WORLD_SIZE']) > 1 if distributed: torch.cuda.set_device(args.local_rank) torch.distributed.init_process_group(backend='nccl', init_method='env://') dist_print(datetime.datetime.now().strftime('[%Y/%m/%d %H:%M:%S]') + ' start training...') dist_print(cfg) assert cfg.backbone in ['18','34','50','101','152','50next','101next','50wide','101wide'] train_loader, cls_num_per_lane = get_train_loader(cfg.batch_size, cfg.data_root, cfg.griding_num, cfg.dataset, cfg.use_aux, distributed, cfg.num_lanes) net = parsingNet(pretrained = True, backbone=cfg.backbone,cls_dim = (cfg.griding_num+1,cls_num_per_lane, cfg.num_lanes),use_aux=cfg.use_aux).cuda() if distributed: net = torch.nn.parallel.DistributedDataParallel(net, device_ids = [args.local_rank]) optimizer = get_optimizer(net, cfg) if cfg.finetune is not None: dist_print('finetune from ', cfg.finetune) state_all = torch.load(cfg.finetune)['model'] state_clip = {} # only use backbone parameters for k,v in state_all.items(): if 'model' in k: state_clip[k] = v net.load_state_dict(state_clip, strict=False) if cfg.resume is not None: dist_print('==> Resume model from ' + cfg.resume) resume_dict = torch.load(cfg.resume, map_location='cpu') net.load_state_dict(resume_dict['model']) if 'optimizer' in resume_dict.keys(): optimizer.load_state_dict(resume_dict['optimizer']) resume_epoch = int(os.path.split(cfg.resume)[1][2:5]) + 1 else: resume_epoch = 0 scheduler = get_scheduler(optimizer, cfg, len(train_loader)) dist_print(len(train_loader)) metric_dict = get_metric_dict(cfg) loss_dict = get_loss_dict(cfg) logger = get_logger(work_dir, cfg) cp_projects(args.auto_backup, work_dir) for epoch in range(resume_epoch, cfg.epoch): train(net, train_loader, loss_dict, optimizer, scheduler, logger, epoch, metric_dict, cfg.use_aux) save_model(net, optimizer, epoch ,work_dir, distributed) logger.close()