import torch import torch.nn as nn import torch.nn.functional as F import numpy as np class OhemCELoss(nn.Module): def __init__(self, thresh, n_min, ignore_lb=255, *args, **kwargs): super(OhemCELoss, self).__init__() self.thresh = -torch.log(torch.tensor(thresh, dtype=torch.float)).cuda() self.n_min = n_min self.ignore_lb = ignore_lb self.criteria = nn.CrossEntropyLoss(ignore_index=ignore_lb, reduction='none') def forward(self, logits, labels): N, C, H, W = logits.size() loss = self.criteria(logits, labels).view(-1) loss, _ = torch.sort(loss, descending=True) if loss[self.n_min] > self.thresh: loss = loss[loss>self.thresh] else: loss = loss[:self.n_min] return torch.mean(loss) class SoftmaxFocalLoss(nn.Module): def __init__(self, gamma, ignore_lb=255, *args, **kwargs): super(SoftmaxFocalLoss, self).__init__() self.gamma = gamma self.nll = nn.NLLLoss(ignore_index=ignore_lb) def forward(self, logits, labels): scores = F.softmax(logits, dim=1) factor = torch.pow(1.-scores, self.gamma) log_score = F.log_softmax(logits, dim=1) log_score = factor * log_score loss = self.nll(log_score, labels) return loss class ParsingRelationLoss(nn.Module): def __init__(self): super(ParsingRelationLoss, self).__init__() def forward(self,logits): n,c,h,w = logits.shape loss_all = [] for i in range(0,h-1): loss_all.append(logits[:,:,i,:] - logits[:,:,i+1,:]) #loss0 : n,c,w loss = torch.cat(loss_all) return torch.nn.functional.smooth_l1_loss(loss,torch.zeros_like(loss)) class ParsingRelationDis(nn.Module): def __init__(self): super(ParsingRelationDis, self).__init__() self.l1 = torch.nn.L1Loss() # self.l1 = torch.nn.MSELoss() def forward(self, x): n,dim,num_rows,num_cols = x.shape x = torch.nn.functional.softmax(x[:,:dim-1,:,:],dim=1) embedding = torch.Tensor(np.arange(dim-1)).float().to(x.device).view(1,-1,1,1) pos = torch.sum(x*embedding,dim = 1) diff_list1 = [] for i in range(0,num_rows // 2): diff_list1.append(pos[:,i,:] - pos[:,i+1,:]) loss = 0 for i in range(len(diff_list1)-1): loss += self.l1(diff_list1[i],diff_list1[i+1]) loss /= len(diff_list1) - 1 return loss