You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

168 lines
5.0 KiB

import numbers
import random
import numpy as np
from PIL import Image, ImageOps, ImageFilter
#from config import cfg
import torch
import pdb
import cv2
# ===============================img tranforms============================
class Compose2(object):
def __init__(self, transforms):
self.transforms = transforms
def __call__(self, img, mask, bbx=None):
if bbx is None:
for t in self.transforms:
img, mask = t(img, mask)
return img, mask
for t in self.transforms:
img, mask, bbx = t(img, mask, bbx)
return img, mask, bbx
class FreeScale(object):
def __init__(self, size):
self.size = size # (h, w)
def __call__(self, img, mask):
return img.resize((self.size[1], self.size[0]), Image.BILINEAR), mask.resize((self.size[1], self.size[0]), Image.NEAREST)
class FreeScaleMask(object):
def __init__(self,size):
self.size = size
def __call__(self,mask):
return mask.resize((self.size[1], self.size[0]), Image.NEAREST)
class Scale(object):
def __init__(self, size):
self.size = size
def __call__(self, img, mask):
if img.size != mask.size:
print(img.size)
print(mask.size)
assert img.size == mask.size
w, h = img.size
if (w <= h and w == self.size) or (h <= w and h == self.size):
return img, mask
if w < h:
ow = self.size
oh = int(self.size * h / w)
return img.resize((ow, oh), Image.BILINEAR), mask.resize((ow, oh), Image.NEAREST)
else:
oh = self.size
ow = int(self.size * w / h)
return img.resize((ow, oh), Image.BILINEAR), mask.resize((ow, oh), Image.NEAREST)
class RandomRotate(object):
"""Crops the given PIL.Image at a random location to have a region of
the given size. size can be a tuple (target_height, target_width)
or an integer, in which case the target will be of a square shape (size, size)
"""
def __init__(self, angle):
self.angle = angle
def __call__(self, image, label):
assert label is None or image.size == label.size
angle = random.randint(0, self.angle * 2) - self.angle
label = label.rotate(angle, resample=Image.NEAREST)
image = image.rotate(angle, resample=Image.BILINEAR)
return image, label
# ===============================label tranforms============================
class DeNormalize(object):
def __init__(self, mean, std):
self.mean = mean
self.std = std
def __call__(self, tensor):
for t, m, s in zip(tensor, self.mean, self.std):
t.mul_(s).add_(m)
return tensor
class MaskToTensor(object):
def __call__(self, img):
return torch.from_numpy(np.array(img, dtype=np.int32)).long()
def find_start_pos(row_sample,start_line):
# row_sample = row_sample.sort()
# for i,r in enumerate(row_sample):
# if r >= start_line:
# return i
l,r = 0,len(row_sample)-1
while True:
mid = int((l+r)/2)
if r - l == 1:
return r
if row_sample[mid] < start_line:
l = mid
if row_sample[mid] > start_line:
r = mid
if row_sample[mid] == start_line:
return mid
class RandomLROffsetLABEL(object):
def __init__(self,max_offset):
self.max_offset = max_offset
def __call__(self,img,label):
offset = np.random.randint(-self.max_offset,self.max_offset)
w, h = img.size
img = np.array(img)
if offset > 0:
img[:,offset:,:] = img[:,0:w-offset,:]
img[:,:offset,:] = 0
if offset < 0:
real_offset = -offset
img[:,0:w-real_offset,:] = img[:,real_offset:,:]
img[:,w-real_offset:,:] = 0
label = np.array(label)
if offset > 0:
label[:,offset:] = label[:,0:w-offset]
label[:,:offset] = 0
if offset < 0:
offset = -offset
label[:,0:w-offset] = label[:,offset:]
label[:,w-offset:] = 0
return Image.fromarray(img),Image.fromarray(label)
class RandomUDoffsetLABEL(object):
def __init__(self,max_offset):
self.max_offset = max_offset
def __call__(self,img,label):
offset = np.random.randint(-self.max_offset,self.max_offset)
w, h = img.size
img = np.array(img)
if offset > 0:
img[offset:,:,:] = img[0:h-offset,:,:]
img[:offset,:,:] = 0
if offset < 0:
real_offset = -offset
img[0:h-real_offset,:,:] = img[real_offset:,:,:]
img[h-real_offset:,:,:] = 0
label = np.array(label)
if offset > 0:
label[offset:,:] = label[0:h-offset,:]
label[:offset,:] = 0
if offset < 0:
offset = -offset
label[0:h-offset,:] = label[offset:,:]
label[h-offset:,:] = 0
return Image.fromarray(img),Image.fromarray(label)