commit 6cc469d655f49a521da40ec44788ac44c37b044c Author: SurPlus <945126479@qq.com> Date: Tue Aug 11 14:54:38 2020 +0800 提交原版代码 diff --git a/code.py b/code.py new file mode 100644 index 0000000..33bbef7 --- /dev/null +++ b/code.py @@ -0,0 +1,370 @@ +import _thread +import queue +import time +import multiprocessing as mp +from multiprocessing import Process # abc +from multiprocessing import Value, Manager +import tensorflow as tf # abc +import numpy as np # abc +from captcha.image import ImageCaptcha # abc +from PIL import Image +import random +import matplotlib.pyplot as plt +import os +import threading +import datetime +number = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9'] +alphabet = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', + 'u', + 'v', 'w', 'x', 'y', 'z'] +ALPHABET = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', + 'U', + 'V', 'W', 'X', 'Y', 'Z'] +IMAGE_HEIGHT=60 +IMAGE_WIDTH =160 +MAX_CAPTCHA =4 +CHAR_SET_LEN=63 +import sys +class Logger(object): + def __init__(self, filename="log.txt"): + self.terminal = sys.stdout + self.log = open(filename, "a") + + def write(self, message): + self.terminal.write(message) + self.log.write(message) + self.log.flush() + +def random_captcha_text(char_set=number + alphabet + ALPHABET, captcha_size=4): + captcha_text = [] + for i in range(captcha_size): + c = random.choice(char_set) + captcha_text.append(c) + return captcha_text + + +def gen_captcha_text_and_image(i=0): + # 创建图像实例对象 + image = ImageCaptcha() + # 随机选择4个字符 + captcha_text = random_captcha_text() + # array 转化为 string + captcha_text = ''.join(captcha_text) + # 生成验证码 + captcha = image.generate(captcha_text) + if i % 100 == 0: + image.write(captcha_text, "D:\\DL\\captcha pics" + captcha_text + '.jpg') + + captcha_image = Image.open(captcha) + captcha_image = np.array(captcha_image) + return captcha_text, captcha_image + + +def convert2gray(img): + if len(img.shape) > 2: + gray = np.mean(img, -1) + return gray + else: + return img + + # 文本转向量 +def text2vec(text): + text_len = len(text) + if text_len > MAX_CAPTCHA: + raise ValueError('验证码最长4个字符') + + vector = np.zeros(MAX_CAPTCHA * CHAR_SET_LEN) + + def char2pos(c): + if c == '_': + k = 62 + return k + k = ord(c) - 48 + if k > 9: + k = ord(c) - 55 + if k > 35: + k = ord(c) - 61 + if k > 61: + raise ValueError('No Map') + return k + + for i, c in enumerate(text): + idx = i * CHAR_SET_LEN + char2pos(c) + vector[idx] = 1 + return vector + + +# 向量转回文本 +def vec2text(vec): + char_pos = vec[0] + text = [] + for i, c in enumerate(char_pos): + char_idx = c % CHAR_SET_LEN + if char_idx < 10: + char_code = char_idx + ord('0') + elif char_idx < 36: + char_code = char_idx - 10 + ord('A') + elif char_idx < 62: + char_code = char_idx - 36 + ord('a') + elif char_idx == 62: + char_code = ord('_') + else: + raise ValueError('error') + text.append(chr(char_code)) + + return "".join(text) +# 生成一个训练batch +def get_next_batchDetail(batch_size=64): + re=[] + for loop in range(20): + global IMAGE_HEIGHT + global IMAGE_WIDTH + global MAX_CAPTCHA + global CHAR_SET_LEN + batch_x = np.zeros([batch_size, IMAGE_HEIGHT * IMAGE_WIDTH]) + batch_y = np.zeros([batch_size, MAX_CAPTCHA * CHAR_SET_LEN]) + def wrap_gen_captcha_text_and_image(i): + while True: + text, image = gen_captcha_text_and_image(i) + if image.shape == (60, 160, 3): + return text, image + else: + print("fail") + for i in range(batch_size): + text, image = wrap_gen_captcha_text_and_image(i) + image = convert2gray(image) + batch_x[i, :] = image.flatten() / 255 + batch_y[i, :] = text2vec(text) + re.append((batch_x, batch_y)) + return re + +def spawn_n_processes(size): + global batchLake + while True: + while(len(batchLake[size])>1000): + time.sleep(1) + re=[] + print("batch:" + str(size) + "池大小" + str(len(batchLake[size]))) + pool=mp.Pool(processes=12) + for loop in range(12): + re.append(pool.apply_async(get_next_batchDetail,[size,])) + pool.close() + pool.join() + for i in range(len(re)): + batchLake[size]=batchLake[size]+re[i].get() + +def get_next_batch(batch_size=64): + startTime = datetime.datetime.now() + global batchLake + if(batch_size not in batchLake.keys()): + batchLake[batch_size] =[] + print(batchLake[batch_size]) + try: + _thread.start_new_thread ( spawn_n_processes, (batch_size,) ) + except Exception: + print(Exception) + leng=len(batchLake[batch_size]) + while(leng<=0): + leng = len(batchLake[batch_size]) + time.sleep(0.1) + #print("part1耗时:" + str(datetime.datetime.now() - startTime)) + temp=batchLake[batch_size][0] + del batchLake[batch_size][0] + print("获取batch耗时:"+str(datetime.datetime.now() - startTime)) + print("batch池:"+str(batch_size)+"余量:"+str(leng-1)) + return temp[0],temp[1] + + +# 定义CNN +def crack_captcha_cnn(w_alpha=0.01, b_alpha=0.1): + x = tf.reshape(X, shape=[-1, IMAGE_HEIGHT, IMAGE_WIDTH, 1]) + + w_c1 = tf.Variable(w_alpha * tf.random_normal([3, 3, 1, 32])) + b_c1 = tf.Variable(b_alpha * tf.random_normal([32])) + + conv1 = tf.nn.relu(tf.nn.bias_add(tf.nn.conv2d(x, w_c1, strides=[1, 1, 1, 1], padding='SAME'), b_c1)) + conv1 = tf.nn.max_pool(conv1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') + conv1 = tf.nn.dropout(conv1, keep_prob=keep_prob) + + w_c2 = tf.Variable(w_alpha * tf.random_normal([3, 3, 32, 64])) + b_c2 = tf.Variable(b_alpha * tf.random_normal([64])) + + conv2 = tf.nn.relu(tf.nn.bias_add(tf.nn.conv2d(conv1, w_c2, strides=[1, 1, 1, 1], padding='SAME'), b_c2)) + conv2 = tf.nn.max_pool(conv2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') + conv2 = tf.nn.dropout(conv2, keep_prob=keep_prob) + + w_c3 = tf.Variable(w_alpha * tf.random_normal([3, 3, 64, 64])) + b_c3 = tf.Variable(b_alpha * tf.random_normal([64])) + + conv3 = tf.nn.relu(tf.nn.bias_add(tf.nn.conv2d(conv2, w_c3, strides=[1, 1, 1, 1], padding='SAME'), b_c3)) + conv3 = tf.nn.max_pool(conv3, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') + conv3 = tf.nn.dropout(conv3, keep_prob=keep_prob) + + w_d = tf.Variable(w_alpha * tf.random_normal([8 * 20 * 64, 1024])) + b_d = tf.Variable(b_alpha * tf.random_normal([1024])) + dense = tf.reshape(conv3, [-1, w_d.get_shape().as_list()[0]]) + + dense = tf.nn.relu(tf.add(tf.matmul(dense, w_d), b_d)) + dense = tf.nn.dropout(dense, keep_prob=keep_prob) + + w_out = tf.Variable(w_alpha * tf.random_normal([1024, MAX_CAPTCHA * CHAR_SET_LEN])) + b_out = tf.Variable(b_alpha * tf.random_normal([MAX_CAPTCHA * CHAR_SET_LEN])) + + out = tf.add(tf.matmul(dense, w_out), b_out) + return out + + +# 训练 +def train_crack_captcha_cnn(): + + config = tf.ConfigProto() + config.gpu_options.allow_growth = True + # 具体的代码 + + output = crack_captcha_cnn() + + loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=output, labels=Y)) # 计算损失 + optimizer = tf.train.AdamOptimizer(learning_rate=0.001).minimize(loss) # 计算梯度 + predict = tf.reshape(output, [-1, MAX_CAPTCHA, CHAR_SET_LEN]) # 目标预测 + max_idx_p = tf.argmax(predict, 2) # 目标预测最大值 + max_idx_l = tf.argmax(tf.reshape(Y, [-1, MAX_CAPTCHA, CHAR_SET_LEN]), 2) # 真实标签最大值 + correct_pred = tf.equal(max_idx_p, max_idx_l) + + accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32)) # 准确率 + saver = tf.train.Saver() + with tf.Session(config=config) as sess: + sess.run(tf.global_variables_initializer()) + step = 0 + while True: + batch_x, batch_y = get_next_batch(64) + _, loss_ = sess.run([optimizer, loss], feed_dict={X: batch_x, Y: batch_y, keep_prob: 0.75}) + print(step, loss_) + if step % 100 == 0 and step!=0 : + batch_x_test, batch_y_test = get_next_batch(100) + acc = sess.run(accuracy, feed_dict={X: batch_x_test, Y: batch_y_test, keep_prob: 1.}) + print(step, "准确率:",acc) + if acc > 0.93: + saver.save(sess, "D:\\DL\\models\\85", global_step=step) + step += 1 + + +def crack_captcha(captcha_image, output): + saver = tf.train.Saver() + + with tf.Session() as sess: + sess.run(tf.initialize_all_variables()) + # 获取训练后的参数 + checkpoint = tf.train.get_checkpoint_state("D:\\DL\\models") + if checkpoint and checkpoint.model_checkpoint_path: + saver.restore(sess, checkpoint.model_checkpoint_path) + print("Successfully loaded:", checkpoint.model_checkpoint_path) + else: + print("Could not find old network weights") + + predict = tf.argmax(tf.reshape(output, [-1, MAX_CAPTCHA, CHAR_SET_LEN]), 2) + text_list = sess.run(predict, feed_dict={X: [captcha_image], keep_prob: 1}) + text = vec2text(text_list) + return text + + +if __name__ == '__main__': + #global IMAGE_HEIGHT + #global IMAGE_WIDTH + #global MAX_CAPTCHA + #global CHAR_SET_LEN + #global number + #global alphabet + #global ALPHABET + #global batchLake + train = 0 # 0: 训练 1: 预测 + + path = os.path.abspath(os.path.dirname(__file__)) + type = sys.getfilesystemencoding() + sys.stdout = Logger() + + batchLake={} + if train == 0: + number = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9'] + alphabet = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', + 'u', + 'v', 'w', 'x', 'y', 'z'] + ALPHABET = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', + 'U', + 'V', 'W', 'X', 'Y', 'Z'] + + text, image = gen_captcha_text_and_image() + print("验证码图像channel:", image.shape) + # 图像大小 + IMAGE_HEIGHT = 60 + IMAGE_WIDTH = 160 + MAX_CAPTCHA = len(text) + print("验证码文本最长字符数", MAX_CAPTCHA) + # 文本转向量 + char_set = number + alphabet + ALPHABET + ['_'] # 如果验证码长度小于4, '_'用来补齐 + + CHAR_SET_LEN = len(char_set) + # placeholder占位符 + X = tf.placeholder(tf.float32, [None, IMAGE_HEIGHT * IMAGE_WIDTH]) + Y = tf.placeholder(tf.float32, [None, MAX_CAPTCHA * CHAR_SET_LEN]) + keep_prob = tf.placeholder(tf.float32) + train_crack_captcha_cnn() + # 预测时需要将训练的变量初始化 + if train == 1: + # 自然计数 + step = 0 + # 正确预测计数 + rightCnt = 0 + # 设置测试次数 + count = 10 + number = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9'] + alphabet = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', + 'u', 'v', 'w', 'x', 'y', 'z'] + ALPHABET = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', + 'U', 'V', 'W', 'X', 'Y', 'Z'] + + IMAGE_HEIGHT = 60 + IMAGE_WIDTH = 160 + + char_set = number + alphabet + ALPHABET + ['_'] + CHAR_SET_LEN = len(char_set) + MAX_CAPTCHA = 4 + # placeholder占位符 + X = tf.placeholder(tf.float32, [None, IMAGE_HEIGHT * IMAGE_WIDTH]) + Y = tf.placeholder(tf.float32, [None, MAX_CAPTCHA * CHAR_SET_LEN]) + keep_prob = tf.placeholder(tf.float32) + output = crack_captcha_cnn() + config = tf.ConfigProto() + config.gpu_options.allow_growth = True + saver = tf.train.Saver() + with tf.Session(config=config) as sess: + sess.run(tf.global_variables_initializer()) + # 获取训练后参数路径 + checkpoint = tf.train.get_checkpoint_state("D:\\DL\\models") + if checkpoint and checkpoint.model_checkpoint_path: + saver.restore(sess, checkpoint.model_checkpoint_path) + print("Successfully loaded:", checkpoint.model_checkpoint_path) + else: + print("Could not find old network weights.") + + while True: + text, image = gen_captcha_text_and_image() + f = plt.figure() + ax = f.add_subplot(111) + ax.text(0.1, 0.9,text, ha='center', va='center', transform=ax.transAxes) + plt.imshow(image) + plt.show() + + image = convert2gray(image) + image = image.flatten() / 255 + predict = tf.argmax(tf.reshape(output, [-1, MAX_CAPTCHA, CHAR_SET_LEN]), 2) + text_list = sess.run(predict, feed_dict={X: [image], keep_prob: 1}) + predict_text = vec2text(text_list) + predict_text = crack_captcha(image, output) + print("step:{} 真实值: {} 预测: {} 预测结果: {}".format(str(step), text, predict_text, + "正确" if text.lower() == predict_text.lower() else "错误")) + if text.lower() == predict_text.lower(): + rightCnt += 1 + if step == count - 1: + print("测试总数: {} 测试准确率: {}".format(str(count), str(rightCnt / count))) + break + step += 1