|
|
import _thread
|
|
|
import queue
|
|
|
import time
|
|
|
import multiprocessing as mp
|
|
|
from multiprocessing import Process # abc
|
|
|
from multiprocessing import Value, Manager
|
|
|
import tensorflow as tf # abc
|
|
|
import numpy as np # abc
|
|
|
from captcha.image import ImageCaptcha # abc
|
|
|
from PIL import Image
|
|
|
import random
|
|
|
import matplotlib.pyplot as plt
|
|
|
import os
|
|
|
import threading
|
|
|
import datetime
|
|
|
number = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9']
|
|
|
alphabet = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't',
|
|
|
'u',
|
|
|
'v', 'w', 'x', 'y', 'z']
|
|
|
ALPHABET = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T',
|
|
|
'U',
|
|
|
'V', 'W', 'X', 'Y', 'Z']
|
|
|
IMAGE_HEIGHT=60
|
|
|
IMAGE_WIDTH =160
|
|
|
MAX_CAPTCHA =4
|
|
|
CHAR_SET_LEN=63
|
|
|
import sys
|
|
|
class Logger(object):
|
|
|
def __init__(self, filename="log.txt"):
|
|
|
self.terminal = sys.stdout
|
|
|
self.log = open(filename, "a")
|
|
|
|
|
|
def write(self, message):
|
|
|
self.terminal.write(message)
|
|
|
self.log.write(message)
|
|
|
self.log.flush()
|
|
|
|
|
|
def random_captcha_text(char_set=number + alphabet + ALPHABET, captcha_size=4):
|
|
|
captcha_text = []
|
|
|
for i in range(captcha_size):
|
|
|
c = random.choice(char_set)
|
|
|
captcha_text.append(c)
|
|
|
return captcha_text
|
|
|
|
|
|
|
|
|
def gen_captcha_text_and_image(i=0):
|
|
|
# 创建图像实例对象
|
|
|
image = ImageCaptcha()
|
|
|
# 随机选择4个字符
|
|
|
captcha_text = random_captcha_text()
|
|
|
# array 转化为 string
|
|
|
captcha_text = ''.join(captcha_text)
|
|
|
# 生成验证码
|
|
|
captcha = image.generate(captcha_text)
|
|
|
if i % 100 == 0:
|
|
|
image.write(captcha_text, "D:\\DL\\captcha pics" + captcha_text + '.jpg')
|
|
|
|
|
|
captcha_image = Image.open(captcha)
|
|
|
captcha_image = np.array(captcha_image)
|
|
|
return captcha_text, captcha_image
|
|
|
|
|
|
|
|
|
def convert2gray(img):
|
|
|
if len(img.shape) > 2:
|
|
|
gray = np.mean(img, -1)
|
|
|
return gray
|
|
|
else:
|
|
|
return img
|
|
|
|
|
|
# 文本转向量
|
|
|
def text2vec(text):
|
|
|
text_len = len(text)
|
|
|
if text_len > MAX_CAPTCHA:
|
|
|
raise ValueError('验证码最长4个字符')
|
|
|
|
|
|
vector = np.zeros(MAX_CAPTCHA * CHAR_SET_LEN)
|
|
|
|
|
|
def char2pos(c):
|
|
|
if c == '_':
|
|
|
k = 62
|
|
|
return k
|
|
|
k = ord(c) - 48
|
|
|
if k > 9:
|
|
|
k = ord(c) - 55
|
|
|
if k > 35:
|
|
|
k = ord(c) - 61
|
|
|
if k > 61:
|
|
|
raise ValueError('No Map')
|
|
|
return k
|
|
|
|
|
|
for i, c in enumerate(text):
|
|
|
idx = i * CHAR_SET_LEN + char2pos(c)
|
|
|
vector[idx] = 1
|
|
|
return vector
|
|
|
|
|
|
|
|
|
# 向量转回文本
|
|
|
def vec2text(vec):
|
|
|
char_pos = vec[0]
|
|
|
text = []
|
|
|
for i, c in enumerate(char_pos):
|
|
|
char_idx = c % CHAR_SET_LEN
|
|
|
if char_idx < 10:
|
|
|
char_code = char_idx + ord('0')
|
|
|
elif char_idx < 36:
|
|
|
char_code = char_idx - 10 + ord('A')
|
|
|
elif char_idx < 62:
|
|
|
char_code = char_idx - 36 + ord('a')
|
|
|
elif char_idx == 62:
|
|
|
char_code = ord('_')
|
|
|
else:
|
|
|
raise ValueError('error')
|
|
|
text.append(chr(char_code))
|
|
|
|
|
|
return "".join(text)
|
|
|
# 生成一个训练batch
|
|
|
def get_next_batchDetail(batch_size=64):
|
|
|
re=[]
|
|
|
for loop in range(20):
|
|
|
global IMAGE_HEIGHT
|
|
|
global IMAGE_WIDTH
|
|
|
global MAX_CAPTCHA
|
|
|
global CHAR_SET_LEN
|
|
|
batch_x = np.zeros([batch_size, IMAGE_HEIGHT * IMAGE_WIDTH])
|
|
|
batch_y = np.zeros([batch_size, MAX_CAPTCHA * CHAR_SET_LEN])
|
|
|
def wrap_gen_captcha_text_and_image(i):
|
|
|
while True:
|
|
|
text, image = gen_captcha_text_and_image(i)
|
|
|
if image.shape == (60, 160, 3):
|
|
|
return text, image
|
|
|
else:
|
|
|
print("fail")
|
|
|
for i in range(batch_size):
|
|
|
text, image = wrap_gen_captcha_text_and_image(i)
|
|
|
image = convert2gray(image)
|
|
|
batch_x[i, :] = image.flatten() / 255
|
|
|
batch_y[i, :] = text2vec(text)
|
|
|
re.append((batch_x, batch_y))
|
|
|
return re
|
|
|
|
|
|
def spawn_n_processes(size):
|
|
|
global batchLake
|
|
|
while True:
|
|
|
while(len(batchLake[size])>1000):
|
|
|
time.sleep(1)
|
|
|
re=[]
|
|
|
print("batch:" + str(size) + "池大小" + str(len(batchLake[size])))
|
|
|
pool=mp.Pool(processes=12)
|
|
|
for loop in range(12):
|
|
|
re.append(pool.apply_async(get_next_batchDetail,[size,]))
|
|
|
pool.close()
|
|
|
pool.join()
|
|
|
for i in range(len(re)):
|
|
|
batchLake[size]=batchLake[size]+re[i].get()
|
|
|
|
|
|
def get_next_batch(batch_size=64):
|
|
|
startTime = datetime.datetime.now()
|
|
|
global batchLake
|
|
|
if(batch_size not in batchLake.keys()):
|
|
|
batchLake[batch_size] =[]
|
|
|
print(batchLake[batch_size])
|
|
|
try:
|
|
|
_thread.start_new_thread ( spawn_n_processes, (batch_size,) )
|
|
|
except Exception:
|
|
|
print(Exception)
|
|
|
leng=len(batchLake[batch_size])
|
|
|
while(leng<=0):
|
|
|
leng = len(batchLake[batch_size])
|
|
|
time.sleep(0.1)
|
|
|
#print("part1耗时:" + str(datetime.datetime.now() - startTime))
|
|
|
temp=batchLake[batch_size][0]
|
|
|
del batchLake[batch_size][0]
|
|
|
print("获取batch耗时:"+str(datetime.datetime.now() - startTime))
|
|
|
print("batch池:"+str(batch_size)+"余量:"+str(leng-1))
|
|
|
return temp[0],temp[1]
|
|
|
|
|
|
|
|
|
# 定义CNN
|
|
|
def crack_captcha_cnn(w_alpha=0.01, b_alpha=0.1):
|
|
|
x = tf.reshape(X, shape=[-1, IMAGE_HEIGHT, IMAGE_WIDTH, 1])
|
|
|
|
|
|
w_c1 = tf.Variable(w_alpha * tf.random_normal([3, 3, 1, 32]))
|
|
|
b_c1 = tf.Variable(b_alpha * tf.random_normal([32]))
|
|
|
|
|
|
conv1 = tf.nn.relu(tf.nn.bias_add(tf.nn.conv2d(x, w_c1, strides=[1, 1, 1, 1], padding='SAME'), b_c1))
|
|
|
conv1 = tf.nn.max_pool(conv1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
|
|
|
conv1 = tf.nn.dropout(conv1, keep_prob=keep_prob)
|
|
|
|
|
|
w_c2 = tf.Variable(w_alpha * tf.random_normal([3, 3, 32, 64]))
|
|
|
b_c2 = tf.Variable(b_alpha * tf.random_normal([64]))
|
|
|
|
|
|
conv2 = tf.nn.relu(tf.nn.bias_add(tf.nn.conv2d(conv1, w_c2, strides=[1, 1, 1, 1], padding='SAME'), b_c2))
|
|
|
conv2 = tf.nn.max_pool(conv2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
|
|
|
conv2 = tf.nn.dropout(conv2, keep_prob=keep_prob)
|
|
|
|
|
|
w_c3 = tf.Variable(w_alpha * tf.random_normal([3, 3, 64, 64]))
|
|
|
b_c3 = tf.Variable(b_alpha * tf.random_normal([64]))
|
|
|
|
|
|
conv3 = tf.nn.relu(tf.nn.bias_add(tf.nn.conv2d(conv2, w_c3, strides=[1, 1, 1, 1], padding='SAME'), b_c3))
|
|
|
conv3 = tf.nn.max_pool(conv3, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
|
|
|
conv3 = tf.nn.dropout(conv3, keep_prob=keep_prob)
|
|
|
|
|
|
w_d = tf.Variable(w_alpha * tf.random_normal([8 * 20 * 64, 1024]))
|
|
|
b_d = tf.Variable(b_alpha * tf.random_normal([1024]))
|
|
|
dense = tf.reshape(conv3, [-1, w_d.get_shape().as_list()[0]])
|
|
|
|
|
|
dense = tf.nn.relu(tf.add(tf.matmul(dense, w_d), b_d))
|
|
|
dense = tf.nn.dropout(dense, keep_prob=keep_prob)
|
|
|
|
|
|
w_out = tf.Variable(w_alpha * tf.random_normal([1024, MAX_CAPTCHA * CHAR_SET_LEN]))
|
|
|
b_out = tf.Variable(b_alpha * tf.random_normal([MAX_CAPTCHA * CHAR_SET_LEN]))
|
|
|
|
|
|
out = tf.add(tf.matmul(dense, w_out), b_out)
|
|
|
return out
|
|
|
|
|
|
|
|
|
# 训练
|
|
|
def train_crack_captcha_cnn():
|
|
|
|
|
|
config = tf.ConfigProto()
|
|
|
config.gpu_options.allow_growth = True
|
|
|
# 具体的代码
|
|
|
|
|
|
output = crack_captcha_cnn()
|
|
|
|
|
|
loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=output, labels=Y)) # 计算损失
|
|
|
optimizer = tf.train.AdamOptimizer(learning_rate=0.001).minimize(loss) # 计算梯度
|
|
|
predict = tf.reshape(output, [-1, MAX_CAPTCHA, CHAR_SET_LEN]) # 目标预测
|
|
|
max_idx_p = tf.argmax(predict, 2) # 目标预测最大值
|
|
|
max_idx_l = tf.argmax(tf.reshape(Y, [-1, MAX_CAPTCHA, CHAR_SET_LEN]), 2) # 真实标签最大值
|
|
|
correct_pred = tf.equal(max_idx_p, max_idx_l)
|
|
|
|
|
|
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32)) # 准确率
|
|
|
saver = tf.train.Saver()
|
|
|
with tf.Session(config=config) as sess:
|
|
|
sess.run(tf.global_variables_initializer())
|
|
|
step = 0
|
|
|
while True:
|
|
|
batch_x, batch_y = get_next_batch(64)
|
|
|
_, loss_ = sess.run([optimizer, loss], feed_dict={X: batch_x, Y: batch_y, keep_prob: 0.75})
|
|
|
print(step, loss_)
|
|
|
if step % 100 == 0 and step!=0 :
|
|
|
batch_x_test, batch_y_test = get_next_batch(100)
|
|
|
acc = sess.run(accuracy, feed_dict={X: batch_x_test, Y: batch_y_test, keep_prob: 1.})
|
|
|
print(step, "准确率:",acc)
|
|
|
if acc > 0.93:
|
|
|
saver.save(sess, "D:\\DL\\models\\85", global_step=step)
|
|
|
step += 1
|
|
|
|
|
|
|
|
|
def crack_captcha(captcha_image, output):
|
|
|
saver = tf.train.Saver()
|
|
|
|
|
|
with tf.Session() as sess:
|
|
|
sess.run(tf.initialize_all_variables())
|
|
|
# 获取训练后的参数
|
|
|
checkpoint = tf.train.get_checkpoint_state("D:\\DL\\models")
|
|
|
if checkpoint and checkpoint.model_checkpoint_path:
|
|
|
saver.restore(sess, checkpoint.model_checkpoint_path)
|
|
|
print("Successfully loaded:", checkpoint.model_checkpoint_path)
|
|
|
else:
|
|
|
print("Could not find old network weights")
|
|
|
|
|
|
predict = tf.argmax(tf.reshape(output, [-1, MAX_CAPTCHA, CHAR_SET_LEN]), 2)
|
|
|
text_list = sess.run(predict, feed_dict={X: [captcha_image], keep_prob: 1})
|
|
|
text = vec2text(text_list)
|
|
|
return text
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
#global IMAGE_HEIGHT
|
|
|
#global IMAGE_WIDTH
|
|
|
#global MAX_CAPTCHA
|
|
|
#global CHAR_SET_LEN
|
|
|
#global number
|
|
|
#global alphabet
|
|
|
#global ALPHABET
|
|
|
#global batchLake
|
|
|
train = 0 # 0: 训练 1: 预测
|
|
|
|
|
|
path = os.path.abspath(os.path.dirname(__file__))
|
|
|
type = sys.getfilesystemencoding()
|
|
|
sys.stdout = Logger()
|
|
|
|
|
|
batchLake={}
|
|
|
if train == 0:
|
|
|
number = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9']
|
|
|
alphabet = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't',
|
|
|
'u',
|
|
|
'v', 'w', 'x', 'y', 'z']
|
|
|
ALPHABET = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T',
|
|
|
'U',
|
|
|
'V', 'W', 'X', 'Y', 'Z']
|
|
|
|
|
|
text, image = gen_captcha_text_and_image()
|
|
|
print("验证码图像channel:", image.shape)
|
|
|
# 图像大小
|
|
|
IMAGE_HEIGHT = 60
|
|
|
IMAGE_WIDTH = 160
|
|
|
MAX_CAPTCHA = len(text)
|
|
|
print("验证码文本最长字符数", MAX_CAPTCHA)
|
|
|
# 文本转向量
|
|
|
char_set = number + alphabet + ALPHABET + ['_'] # 如果验证码长度小于4, '_'用来补齐
|
|
|
|
|
|
CHAR_SET_LEN = len(char_set)
|
|
|
# placeholder占位符
|
|
|
X = tf.placeholder(tf.float32, [None, IMAGE_HEIGHT * IMAGE_WIDTH])
|
|
|
Y = tf.placeholder(tf.float32, [None, MAX_CAPTCHA * CHAR_SET_LEN])
|
|
|
keep_prob = tf.placeholder(tf.float32)
|
|
|
train_crack_captcha_cnn()
|
|
|
# 预测时需要将训练的变量初始化
|
|
|
if train == 1:
|
|
|
# 自然计数
|
|
|
step = 0
|
|
|
# 正确预测计数
|
|
|
rightCnt = 0
|
|
|
# 设置测试次数
|
|
|
count = 10
|
|
|
number = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9']
|
|
|
alphabet = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't',
|
|
|
'u', 'v', 'w', 'x', 'y', 'z']
|
|
|
ALPHABET = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T',
|
|
|
'U', 'V', 'W', 'X', 'Y', 'Z']
|
|
|
|
|
|
IMAGE_HEIGHT = 60
|
|
|
IMAGE_WIDTH = 160
|
|
|
|
|
|
char_set = number + alphabet + ALPHABET + ['_']
|
|
|
CHAR_SET_LEN = len(char_set)
|
|
|
MAX_CAPTCHA = 4
|
|
|
# placeholder占位符
|
|
|
X = tf.placeholder(tf.float32, [None, IMAGE_HEIGHT * IMAGE_WIDTH])
|
|
|
Y = tf.placeholder(tf.float32, [None, MAX_CAPTCHA * CHAR_SET_LEN])
|
|
|
keep_prob = tf.placeholder(tf.float32)
|
|
|
output = crack_captcha_cnn()
|
|
|
config = tf.ConfigProto()
|
|
|
config.gpu_options.allow_growth = True
|
|
|
saver = tf.train.Saver()
|
|
|
with tf.Session(config=config) as sess:
|
|
|
sess.run(tf.global_variables_initializer())
|
|
|
# 获取训练后参数路径
|
|
|
checkpoint = tf.train.get_checkpoint_state("D:\\DL\\models")
|
|
|
if checkpoint and checkpoint.model_checkpoint_path:
|
|
|
saver.restore(sess, checkpoint.model_checkpoint_path)
|
|
|
print("Successfully loaded:", checkpoint.model_checkpoint_path)
|
|
|
else:
|
|
|
print("Could not find old network weights.")
|
|
|
|
|
|
while True:
|
|
|
text, image = gen_captcha_text_and_image()
|
|
|
f = plt.figure()
|
|
|
ax = f.add_subplot(111)
|
|
|
ax.text(0.1, 0.9,text, ha='center', va='center', transform=ax.transAxes)
|
|
|
plt.imshow(image)
|
|
|
plt.show()
|
|
|
|
|
|
image = convert2gray(image)
|
|
|
image = image.flatten() / 255
|
|
|
predict = tf.argmax(tf.reshape(output, [-1, MAX_CAPTCHA, CHAR_SET_LEN]), 2)
|
|
|
text_list = sess.run(predict, feed_dict={X: [image], keep_prob: 1})
|
|
|
predict_text = vec2text(text_list)
|
|
|
predict_text = crack_captcha(image, output)
|
|
|
print("step:{} 真实值: {} 预测: {} 预测结果: {}".format(str(step), text, predict_text,
|
|
|
"正确" if text.lower() == predict_text.lower() else "错误"))
|
|
|
if text.lower() == predict_text.lower():
|
|
|
rightCnt += 1
|
|
|
if step == count - 1:
|
|
|
print("测试总数: {} 测试准确率: {}".format(str(count), str(rightCnt / count)))
|
|
|
break
|
|
|
step += 1
|