|
|
|
|
@ -487,6 +487,75 @@ def piecewise_linear_transform(request):
|
|
|
|
|
return HttpResponse([{"orig": image, "hist": ret_name1}, {"orig": out_name, "hist": ret_name2}])
|
|
|
|
|
return HttpResponse('请使用POST方法')
|
|
|
|
|
|
|
|
|
|
@csrf_exempt
|
|
|
|
|
def edge_detection(request):
|
|
|
|
|
if request.method == 'POST':
|
|
|
|
|
para = json.loads(request.body)
|
|
|
|
|
image = para['img']
|
|
|
|
|
img = cv2.imread(PREFIX + image, 0)
|
|
|
|
|
operator = para['operator']
|
|
|
|
|
if operator == 'Roberts':
|
|
|
|
|
kernelx = np.array([[-1, 0], [0, 1]], dtype=int)
|
|
|
|
|
kernely = np.array([[0, -1], [1, 0]], dtype=int)
|
|
|
|
|
x = cv2.filter2D(img, cv2.CV_16S, kernelx)
|
|
|
|
|
y = cv2.filter2D(img, cv2.CV_16S, kernely)
|
|
|
|
|
absX = cv2.convertScaleAbs(x)
|
|
|
|
|
absY = cv2.convertScaleAbs(y)
|
|
|
|
|
img = cv2.addWeighted(absX, 0.5, absY, 0.5, 0)
|
|
|
|
|
elif operator == 'Sobel':
|
|
|
|
|
x = cv2.Sobel(img, cv2.CV_16S, 1, 0)
|
|
|
|
|
y = cv2.Sobel(img, cv2.CV_16S, 0, 1)
|
|
|
|
|
absX = cv2.convertScaleAbs(x)
|
|
|
|
|
absY = cv2.convertScaleAbs(y)
|
|
|
|
|
img = cv2.addWeighted(absX, 0.5, absY, 0.5, 0)
|
|
|
|
|
elif operator == 'Laplacian':
|
|
|
|
|
img_gaussianBlur = cv2.GaussianBlur(img, (5, 5), 0)
|
|
|
|
|
dst = cv2.Laplacian(img_gaussianBlur, cv2.CV_16S, ksize=3)
|
|
|
|
|
img = cv2.convertScaleAbs(dst)
|
|
|
|
|
elif operator == 'LoG':
|
|
|
|
|
grayImage = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
|
|
|
|
img = cv2.copyMakeBorder(grayImage, 2, 2, 2, 2, borderType=cv2.BORDER_REPLICATE)
|
|
|
|
|
img = cv2.GaussianBlur(img, (3, 3), 0, 0)
|
|
|
|
|
m1 = np.array(
|
|
|
|
|
[[0, 0, -1, 0, 0], [0, -1, -2, -1, 0], [-1, -2, 16, -2, -1], [0, -1, -2, -1, 0], [0, 0, -1, 0, 0]],
|
|
|
|
|
dtype=np.int32)
|
|
|
|
|
image1 = np.zeros(img.shape).astype(np.int32)
|
|
|
|
|
h, w, _ = img.shape
|
|
|
|
|
for i in range(2, h - 2):
|
|
|
|
|
for j in range(2, w - 2):
|
|
|
|
|
image1[i, j] = np.sum(m1 * img[i - 2:i + 3, j - 2:j + 3, 1])
|
|
|
|
|
img = cv2.convertScaleAbs(image1)
|
|
|
|
|
elif operator == 'Canny':
|
|
|
|
|
tmp = cv2.GaussianBlur(img, (3, 3), 0)
|
|
|
|
|
# 3. 求x,y方向的Sobel算子
|
|
|
|
|
gradx = cv2.Sobel(tmp, cv2.CV_16SC1, 1, 0)
|
|
|
|
|
grady = cv2.Sobel(tmp, cv2.CV_16SC1, 0, 1)
|
|
|
|
|
# 4. 使用Canny函数处理图像,x,y分别是3求出来的梯度,低阈值50,高阈值150
|
|
|
|
|
img = cv2.Canny(gradx, grady, 50, 150)
|
|
|
|
|
elif operator == 'Enhance':
|
|
|
|
|
h, w = img.shape
|
|
|
|
|
gradient = np.zeros((h, w))
|
|
|
|
|
img = img.astype('float')
|
|
|
|
|
for i in range(h - 1):
|
|
|
|
|
for j in range(w - 1):
|
|
|
|
|
gx = abs(img[i + 1, j] - img[i, j])
|
|
|
|
|
gy = abs(img[i, j + 1] - img[i, j])
|
|
|
|
|
gradient[i, j] = gx + gy
|
|
|
|
|
sharp = img + gradient
|
|
|
|
|
sharp = np.where(sharp > 255, 255, sharp)
|
|
|
|
|
sharp = np.where(sharp < 0, 0, sharp)
|
|
|
|
|
gradient = gradient.astype('uint8')
|
|
|
|
|
sharp = sharp.astype('uint8')
|
|
|
|
|
sharp_name = getImageName() + DEFAULT_FORMAT
|
|
|
|
|
gradient_name = getImageName() + DEFAULT_FORMAT
|
|
|
|
|
cv2.imwrite(PREFIX + sharp_name, sharp)
|
|
|
|
|
cv2.imwrite(PREFIX + gradient_name, gradient)
|
|
|
|
|
ret = [{"sharp": sharp_name, "gradient": gradient_name}]
|
|
|
|
|
return HttpResponse(ret)
|
|
|
|
|
filename = getImageName() + DEFAULT_FORMAT
|
|
|
|
|
cv2.imwrite(PREFIX + filename, img)
|
|
|
|
|
return HttpResponse(filename)
|
|
|
|
|
return HttpResponse('请使用POST方法')
|
|
|
|
|
|
|
|
|
|
def r(request):
|
|
|
|
|
return render(request, 'upload.html')
|
|
|
|
|
|