# your code
#递归求值的阶乘
def Factorial(n):
#设置终止条件
if n == 1:
return 1
return n*Factorial(n-1)
#依次调用Factorial函数,进行值的累加
Num = 0
for n in range(1,21):
res = Factorial(n)
Num += res
print(Num)
2561327494111820313
# your code
s = [9, 7, 8, 3, 2, 1, 55, 6]
# 求列表元素的个数、最大值和最小值
print('列表s的元素个数为:', len(s))
print('列表s的最大值为:', max(s))
print('列表s的最小值为:', min(s))
# 在列表s中添加一个元素10
s.append(10)
# 从列表s中删除一个元素55
s.remove(55)
# 打印操作后的列表s
print('操作后的列表s为:', s)
列表s的元素个数为: 8 列表s的最大值为: 55 列表s的最小值为: 1 操作后的列表s为: [9, 7, 8, 3, 2, 1, 6, 10]
TTTTTx
TTTTxx
TTTxxx
TTxxxx
Txxxxx
# your code
T = 'T'
x = 'x'
length = 6
for i in range(1, length):
print(T * (length - i) + x * i)
TTTTTx TTTTxx TTTxxx TTxxxx Txxxxx
# your code
def Add(a,b):
return a+b
def Sub(a,b):
return a-b
def Mul(a,b):
return a*b
def Div(a,b):
if(b==0):
print("Error!")
return
return a/b
while True:
Choice = input("Choice:")
if(Choice == '0'):
break
a = int(input("a:"))
b = int(input("b:"))
if(Choice == '1'):
print(Add(a,b))
elif(Choice == '2'):
print(Sub(a,b))
elif(Choice == '3'):
print(Mul(a,b))
elif(Choice == '4'):
print(Div(a,b))
Choice:1 a:2 b:2 4 Choice:0
# your code
class Student:
def __init__(self,name,age,*cou):
self.name = name
self.age = age
self.course = cou
def get_name(self):
return self.name
def get_age(self):
return self.age
def get_course(self):
return max(max(self.course))
st = Student('zhangming',20,[69,88,100])
print('学生姓名为:',st.get_name(),' 年龄为:',st.get_age(),' 最高分成绩为:',st.get_course())
学生姓名为: zhangming 年龄为: 20 最高分成绩为: 100
X | Y | X | Y |
---|---|---|---|
-3.00 | 4 | 0.15 | 255 |
-2.50 | 12 | 0.75 | 170 |
-1.75 | 50 | 1.25 | 100 |
-1.15 | 120 | 1.85 | 20 |
-0.50 | 205 | 2.45 | 14 |
# your code
import matplotlib.pyplot as plt
# 定义 X 轴和 Y 轴的数据
x1 = [-3.00, -2.50, -1.75, -1.15, -0.50]
y1 = [4, 12, 50, 120, 205]
x2 = [0.15, 0.75, 1.25, 1.85, 2.45]
y2 = [255, 170, 100, 20, 14]
# 创建画布和子图
fig, ax = plt.subplots()
# 绘制柱状图(条形图)
ax.bar(x1, y1, width=0.25, align='edge', color='black', label='Y1')
ax.bar(x2, y2, width=-0.25, align='edge', color='red', label='Y2')
# 设置图形属性
ax.set_xlabel('X')
ax.set_ylabel('Y')
ax.set_title('Bar Plot')
ax.legend()
# 显示图形
plt.show()
注:训练集:测试集=8:2,随机种子采用你学号后两位,例如你学号后两位=01,则random_state=1,如果最后两位=34,则random_state=34。最终结果打印出各个回归的w和b系数即可。
序号 | X1 | X2 | X3 | X4 | Y |
---|---|---|---|---|---|
1 | 7 | 26 | 6 | 60 | 78.5 |
2 | 1 | 29 | 15 | 52 | 74.3 |
3 | 11 | 56 | 8 | 20 | 104.3 |
4 | 11 | 31 | 8 | 47 | 87.6 |
5 | 7 | 52 | 6 | 33 | 95.9 |
6 | 11 | 55 | 9 | 22 | 109.2 |
7 | 3 | 71 | 17 | 6 | 102.7 |
8 | 1 | 31 | 22 | 44 | 72.5 |
9 | 2 | 54 | 18 | 22 | 93.1 |
10 | 21 | 47 | 4 | 26 | 115.9 |
11 | 1 | 40 | 23 | 34 | 83.8 |
12 | 11 | 66 | 9 | 12 | 113.3 |
13 | 10 | 68 | 8 | 12 | 109.4 |
# your code
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression, Ridge, Lasso
# 读取原始数据并创建数据框
data = pd.DataFrame({
'X1': [7, 1, 11, 11, 7, 11, 3, 1, 2, 21, 1, 11, 10],
'X2': [26, 29, 56, 31, 52, 55, 71, 31, 54, 47, 40, 66, 68],
'X3': [6, 15, 8, 8, 6, 9, 17, 22, 18, 4, 23, 9, 13],
'X4': [60, 52, 20, 47, 33, 22, 6, 44, 22, 26, 34, 22, 22],
'Y': [78.5, 74.3, 104.3, 87.6, 95.9, 109.2, 102.7, 72.5, 93.1, 115.9, 83.8, 113.3, 109.4]
})
# 分离出自变量和因变量
X = data[['X1', 'X2', 'X3', 'X4']]
y = data['Y']
# 将训练集和测试集按 8:2 分割,随机种子为学号后两位
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=46)
# 线性回归模型
linear_model = LinearRegression()
linear_model.fit(X_train, y_train)
# 输出线性回归的 w 和 b 系数
print('线性回归 w:', linear_model.coef_)
print('线性回归 b:', linear_model.intercept_)
# 岭回归模型
ridge_model = Ridge(alpha=1.0)
ridge_model.fit(X_train, y_train)
# 输出岭回归的 w 和 b 系数
print('岭回归 w:', ridge_model.coef_)
print('岭回归 b:', ridge_model.intercept_)
# Lasso 回归模型
lasso_model = Lasso(alpha=1.0)
lasso_model.fit(X_train, y_train)
# 输出 Lasso 回归的 w 和 b 系数
print('Lasso 回归 w:', lasso_model.coef_)
print('Lasso 回归 b:', lasso_model.intercept_)
线性回归 w: [ 1.35948225 0.4167478 -0.07305928 -0.30456039] 线性回归 b: 75.60713278903711 岭回归 w: [ 1.3430031 0.41227364 -0.08570926 -0.31061566] 岭回归 b: 76.29590235926298 Lasso 回归 w: [ 1.34553439 0.42015643 -0.05861913 -0.29662245] Lasso 回归 b: 75.13380702066775
注:训练集:测试集=1:1,随机种子采用你学号后两位,例如你学号后两位=01,则random_state=1,如果最后两位=34,则random_state=34。最终结果输出你预测结果、实际结果以及模型得分三项。
序号 | 年龄 | 收入 | 是否为学生 | 信誉 | 购买计算机 |
---|---|---|---|---|---|
1 | <=30 | 高 | 否 | 中 | 否 |
2 | <=30 | 高 | 否 | 优 | 否 |
3 | 31-40 | 高 | 否 | 中 | 是 |
4 | >40 | 中 | 否 | 中 | 是 |
5 | >40 | 低 | 是 | 中 | 是 |
6 | >40 | 低 | 是 | 优 | 否 |
7 | 31-40 | 低 | 是 | 优 | 是 |
8 | <=30 | 中 | 否 | 中 | 否 |
9 | <=30 | 低 | 是 | 中 | 是 |
10 | >40 | 中 | 是 | 中 | 是 |
11 | <=30 | 中 | 是 | 优 | 是 |
12 | 31-40 | 中 | 否 | 优 | 是 |
13 | 31-40 | 高 | 是 | 中 | 是 |
14 | >40 | 中 | 否 | 优 | 否 |
import numpy as np
import pandas as pd
from sklearn import metrics
# 导入高斯朴素贝叶斯分类器
from sklearn.naive_bayes import GaussianNB
from sklearn.model_selection import train_test_split
x = np.array(
[
[1, 3, 0, 1, 0],
[1, 3, 0, 2, 1],
[2, 3, 0, 2, 1],
[3, 2, 0, 1, 1],
[3, 1, 1, 1, 1],
[3, 1, 1, 2, 0],
[2, 1, 1, 2, 1],
[1, 2, 0, 1, 0],
[1, 1, 1, 1, 1],
[3, 2, 1, 1, 1],
[1, 2, 1, 2, 1],
[2, 2, 0, 2, 1],
[2, 3, 1, 1, 1],
[3, 2, 0, 2, 0],
]
)
y = np.array(
[
0,1,1,1,1,0,1,0,1,1,1,1,1,0
]
)
X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.5, random_state=46
)
# 使用高斯朴素贝叶斯进行计算
clf = GaussianNB()
clf.fit(X_train, y_train)
# 评估
y_predict = clf.predict(X_test)
score_gnb = metrics.accuracy_score(y_predict,y_test)
print('该用户是否购买计算机:',y_predict)
print(y_test)
print(score_gnb)
该用户是否购买计算机: [1 1 1 1 1 1 1] [1 1 1 0 0 1 1] 0.7142857142857143