diff --git a/ACM/DongDong认亲戚.py b/ACM/DongDong认亲戚.py deleted file mode 100644 index f28dfbf..0000000 --- a/ACM/DongDong认亲戚.py +++ /dev/null @@ -1,2 +0,0 @@ -a=[0]*int(2e4) -print(len(a)) \ No newline at end of file diff --git a/ACM/World Finals.py b/ACM/World Finals.py deleted file mode 100644 index 70c2a32..0000000 --- a/ACM/World Finals.py +++ /dev/null @@ -1,54 +0,0 @@ -from functools import cmp_to_key -c=[[],[]] -string=[[],[]] -for i in range(2): - a = eval(input()) - while a>0: - s=input().split() - s[1],s[2]=eval(s[1]),eval(s[2]) - c[i].append(s) - string[i].append(s[0]) - a-=1 -def cmp(a,b): - if a[1]>b[1]: - return -1 - elif a[1]==b[1]: - if a[2]n:continue; - nums.append([m,n]) -def cmp(a,b):#升序 - if(a[0]>b[0]): - return 1 - else : - return -1#不变 -nums=sorted(nums,key=functools.cmp_to_key(cmp)) -# for i in nums: -# print(i) -sum = 0 -start,end=nums[0][0],nums[0][1] -count=1 -while count=start and nums[count][0]<=end: - if end<=nums[count][1]: - end=nums[count][1] - else : - sum+=end-start+1 - start=nums[count][0];end=nums[count][1] - count+=1 -sum+=end-start+1 -print(a-sum+1) \ No newline at end of file diff --git a/ACM/校门外的树.py b/ACM/校门外的树.py deleted file mode 100644 index b9b44d6..0000000 --- a/ACM/校门外的树.py +++ /dev/null @@ -1,7 +0,0 @@ -a,b =map(int, input().split(' ')) -nums=[] -for i in range(b): - m,n=map(int,input().split(' ')) - nums.extend(range(m,n+1)) -nums=set(nums) -print(a+1-len(nums)) \ No newline at end of file diff --git a/盘荣博/数据可视化/week1.py b/盘荣博/数据可视化/week1.py index e69de29..66aa09d 100644 --- a/盘荣博/数据可视化/week1.py +++ b/盘荣博/数据可视化/week1.py @@ -0,0 +1,68 @@ +import pandas as pd +<<<<<<< HEAD +import numpy as np +from scipy.stats import zscore +from sklearn.decomposition import PCA +from scipy.stats import zscore +import matplotlib.pyplot as plt +from matplotlib.pyplot import ylabel +df = pd.read_excel("棉花产量论文作业的数据.xlsx") +# plt.plot(df["年份"],df["单产"]) +plt.rcParams['font.sans-serif']="SimHei" +# plt.rcParams['size'] =10 +# plt.ylabel('单产') +# plt.xlabel('年份') + +# print(df) +d = df.to_numpy()[:,1:] +print(d) +plt.subplot(4,1,1) +plt.scatter(d[:,:1],d[:,1:2],c='r') +ylabel('原始数据'),plt.title("单产和种子费用的关系") +#公式调用标准化,遵守标准正态分布 +data = zscore(d) +print(data) +plt.subplot(4,1,2) +plt.scatter(data[:,:1],data[:,1:2],c='b',) +ylabel('zscore') + +print(d.max(axis=0)) +print(d.std(axis=0)) +print(d.mean(axis=0)) +#手写标准正态分布 +data1=(d-d.mean(axis=0))/d.std(axis=0) +print(data1) +plt.subplot(4,1,3) +plt.scatter(data1[:,:1],data1[:,1:2],c='y') +ylabel('手写标准正态分布') + +data2=(d-d.min(axis=0))/(d.max(axis=0)-d.min(axis=0)) +plt.subplot(4,1,4) +plt.scatter(data2[:,:1],data2[:,1:2],c='g') +plt.xlabel('压缩到0~1') +print(data==data1) + + +# plt.savefig("shuju.jpg",dpi=2000) +# plt.show() +md= PCA().fit(data) +cf = np.cov(data.T)#求协方差矩阵 +print(cf) +c, d= np.linalg.eig(cf) +print("特征值:\n",c) +print(md.explained_variance_) +e=c/c.sum() +# for _ in range(len(e)): +# if(_!=0): +# e[_]+=e[_-1] +print('贡献率:') +print(e) +print(md.explained_variance_ratio_) +print('特征向量:') +print(d.T) +print(md.components_) +print(md.components_-d.T<=0.1) + +plt.savefig("shuju.jpg",dpi=2000) +plt.show() +