From 7c694554d44b302ec0bac96b954049d0409addda Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?=E7=9B=98=E8=8D=A3=E5=8D=9A?= <2858829498@qq.com> Date: Sat, 20 Jul 2024 14:02:27 +0800 Subject: [PATCH] =?UTF-8?q?=E4=BF=AE=E6=94=B9?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- 盘荣博/数据可视化/week1.py | 23 +++++++++++++++++++++-- 1 file changed, 21 insertions(+), 2 deletions(-) diff --git a/盘荣博/数据可视化/week1.py b/盘荣博/数据可视化/week1.py index 74a1462..6e9c134 100644 --- a/盘荣博/数据可视化/week1.py +++ b/盘荣博/数据可视化/week1.py @@ -1,5 +1,7 @@ import pandas as pd +import numpy as np from scipy.stats import zscore +from sklearn.decomposition import PCA import matplotlib.pyplot as plt from matplotlib.pyplot import ylabel df = pd.read_excel("棉花产量论文作业的数据.xlsx") @@ -38,5 +40,22 @@ plt.scatter(data2[:,:1],data2[:,1:2],c='g') plt.xlabel('压缩到0~1') print(data==data1) -plt.savefig("shuju.jpg",dpi=2000) -plt.show() \ No newline at end of file +# plt.savefig("shuju.jpg",dpi=2000) +# plt.show() +md= PCA().fit(data) +cf = np.cov(data.T)#求协方差矩阵 +print(cf) +c, d= np.linalg.eig(cf) +print("特征值:\n",c) +print(md.explained_variance_) +e=c/c.sum() +# for _ in range(len(e)): +# if(_!=0): +# e[_]+=e[_-1] +print('贡献率:') +print(e) +print(md.explained_variance_ratio_) +print('特征向量:') +print(d.T) +print(md.components_) +print(md.components_-d.T<=0.1) \ No newline at end of file