""" Programmer : EOF File : config.py Date : 2016.01.06 E-mail : jasonleaster@163.com License : MIT License Description : This is a configure file for this project. """ import os def get_project_rootpath(): """ 获取项目根目录。此函数的能力体现在,不论当前module被import到任何位置,都可以正确获取项目根目录 :return: """ path = os.path.realpath(os.curdir) while True: # PyCharm项目中,'.idea'是必然存在的,且名称唯一 if '.idea' in os.listdir(path): path = str(path).replace('\\', '/') path += '/' return path path = os.path.dirname(path) rpath = get_project_rootpath() DEBUG_MODEL = True USING_CASCADE = False # training set directory for face and non-face images # TRAINING_FACE = os.path.normpath(os.path.join(rpath, "FaceDetection/TrainingImages/FACES/")) # TRAINING_NONFACE = os.path.normpath(os.path.join(rpath, "FaceDetection/TrainingImages/NFACES/")) TRAINING_FACE = "./TrainingImages/FACES/" TRAINING_NONFACE = "./TrainingImages/NFACES/" # test set directory for face and non-face images TEST_FACE = "./TrainingImages/FACES/" TEST_NONFACE = "./TrainingImages/NFACES/" # single image for testing # TEST_IMG = "./Test/soccer.gif" TEST_IMG = "./Test/nens.png" FEATURE_FILE_TRAINING = "./features/features_train.cache" FEATURE_FILE_TESTING = "./features/features_test.cache" FEATURE_FILE_SUBSET = "./features/features_train_subset" FEATURE_FILE_SUBSET_0 = "./features/features_train_subset0.cache" FEATURE_FILE_SUBSET_1 = "./features/features_train_subset1.cache" # For parallel PROCESS_NUM = 2 ADABOOST_CACHE_FILE = "./model/adaboost_classifier.cache" ROC_FILE = "./model/roc.cache" FIGURES = "./figure/" # image size in the training set 19 * 19 TRAINING_IMG_HEIGHT = 19 TRAINING_IMG_WIDTH = 19 # How many different types of Haar-feature FEATURE_TYPE_NUM = 5 # How many number of features that a single training image have FEATURE_NUM = 37862 # FEATURE_NUM = 16373 # FEATURE_NUM = 49608 # number of positive and negative sample will be used in the training process # POSITIVE_SAMPLE = 4800 # NEGATIVE_SAMPLE = 9000 POSITIVE_SAMPLE = 240 NEGATIVE_SAMPLE = 450 SAMPLE_NUM = POSITIVE_SAMPLE + NEGATIVE_SAMPLE TESTING_POSITIVE_SAMPLE = 20 TESTING_NEGATIVE_SAMPLE = 20 TESTING_SAMPLE_NUM = TESTING_NEGATIVE_SAMPLE + TESTING_POSITIVE_SAMPLE LABEL_POSITIVE = +1 LABEL_NEGATIVE = -1 WHITE = 255 BLACK = 0 EXPECTED_TPR = 0.999 EXPECTED_FPR = 0.0005 # for CASCADE EXPECTED_FPR_PRE_LAYYER = 0.1 EXPECTED_TPR_PRE_LAYYER = 0.999 # the threshold range of adaboost. (from -inf to +inf) AB_TH_MIN = -15 AB_TH_MAX = +15 HAAR_FEATURE_TYPE_I = "I" HAAR_FEATURE_TYPE_II = "II" HAAR_FEATURE_TYPE_III = "III" HAAR_FEATURE_TYPE_IV = "IV" HAAR_FEATURE_TYPE_V = "V" AB_TH = -3. OVER_LAP_TH = 0.1 MAX_WEAK_NUM = 12 CASACADE_LIMIT = 3 ADABOOST_LIMIT = 150 SEARCH_WIN_STEP = 4 DETECT_START = 1. DETECT_END = 2. DETECT_STEP = 0.2