""" Programmer : EOF E-mail : jasonleaster@gmail.com File : mapReduce.py Date : 2016.04.15 File Description: This file contain two helpful function @Map and @Reduce which will help us to do parallel computing to accelerate the process to compute features of images. """ from config import PROCESS_NUM from config import FEATURE_FILE_SUBSET from config import TRAINING_IMG_WIDTH from config import TRAINING_IMG_HEIGHT from mr_routine import routine from haarFeature import Feature from multiprocessing import Process from image import ImageSet import numpy def map(Face, NonFace): assert isinstance(Face, ImageSet) assert isinstance(NonFace, ImageSet) # Multi-Process for acceleration images = Face.images + NonFace.images images_num= len(images) processes = [] for i in range(PROCESS_NUM): start = int((i *1./PROCESS_NUM) * images_num) end = int(((i+1)*1./PROCESS_NUM) * images_num ) sub_imgs = images[start:end] process = Process(target = routine, args = (sub_imgs, FEATURE_FILE_SUBSET + str(i) + ".cache")) processes.append(process) for i in range(PROCESS_NUM): processes[i].start() for i in range(PROCESS_NUM): processes[i].join() def reduce(): from config import FEATURE_FILE_TRAINING from config import FEATURE_FILE_SUBSET from config import PROCESS_NUM mats = [] tot_samples = 0 for i in range(PROCESS_NUM): sub_mat = numpy.load(FEATURE_FILE_SUBSET + str(i) + ".cache" + ".npy") mats.append(sub_mat) tot_samples += sub_mat.shape[1] haar = Feature(TRAINING_IMG_WIDTH, TRAINING_IMG_HEIGHT) mat = numpy.zeros((haar.featuresNum, tot_samples), numpy.float32) sample_readed = 0 for i in range(PROCESS_NUM): for m in range(mats[i].shape[0]): # feature number for n in range(mats[i].shape[1]): # sample number mat[m][n + sample_readed] = mats[i][m][n] sample_readed += mats[i].shape[1] numpy.save(FEATURE_FILE_TRAINING, mat) return mat