\relax \@writefile{toc}{\contentsline {section}{\numberline {1}Preparation}{3}} \providecommand*\caption@xref[2]{\@setref\relax\@undefined{#1}} \newlabel{fig:combinedImage}{{\caption@xref {fig:combinedImage}{ on input line 120}}{3}} \@writefile{lof}{\contentsline {figure}{\numberline {1}{\ignorespaces Samples from the training set\relax }}{3}} \newlabel{equ:normalization}{{1}{3}} \citation{RobustRealTimeFaceDetection} \citation{RobustRealTimeObjectDetection} \@writefile{toc}{\contentsline {section}{\numberline {2}Integral image}{4}} \newlabel{equ:integralImage}{{2}{4}} \newlabel{fig:normalImage}{{\caption@xref {fig:normalImage}{ on input line 177}}{4}} \@writefile{lof}{\contentsline {figure}{\numberline {2}{\ignorespaces The left side is a normal image in our daily life. The right side is the integral image of the origianl left side image.\relax }}{4}} \newlabel{fig:integralImageFace}{{\caption@xref {fig:integralImageFace}{ on input line 192}}{4}} \@writefile{lof}{\contentsline {figure}{\numberline {3}{\ignorespaces Image on the left is a training sample(face00001.pgm) which is show by Python matplotlib and the right side is the corresponding integral image. Here is a check point if you want to determine whether your implementation is right or wrong.\relax }}{4}} \citation{RobustRealTimeFaceDetection} \citation{LocalInvariantFeatureDetectors} \@writefile{toc}{\contentsline {section}{\numberline {3}Haar Features}{5}} \newlabel{fig:differentHaarFeature}{{\caption@xref {fig:differentHaarFeature}{ on input line 234}}{5}} \@writefile{lof}{\contentsline {figure}{\numberline {4}{\ignorespaces Four different types of Haar features.\relax }}{5}} \@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {Type I}}}{5}} \@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {Type II}}}{5}} \@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {Type III}}}{5}} \@writefile{lof}{\contentsline {subfigure}{\numberline{(d)}{\ignorespaces {Type IV}}}{5}} \citation{ImprovedBoostingAlgorithmUsingConfidenceRatedPredictors} \@writefile{toc}{\contentsline {section}{\numberline {4}Weak Classifier}{6}} \@writefile{loa}{\contentsline {algorithm}{\numberline {1}{\ignorespaces Simple weak classifier\relax }}{6}} \newlabel{equ:weakClassifier}{{3}{6}} \newlabel{fig:simpleWeakClassifier}{{\caption@xref {fig:simpleWeakClassifier}{ on input line 292}}{7}} \@writefile{lof}{\contentsline {figure}{\numberline {5}{\ignorespaces A simple weak classifier. The red curve is the histogram of face class and the blue curve is the histogram of Non-Face class.\relax }}{7}} \citation{BIASVARIANCEANDARCINGCLASSIFIERS} \@writefile{toc}{\contentsline {section}{\numberline {5}AdaBoost}{8}} \@writefile{loa}{\contentsline {algorithm}{\numberline {2}{\ignorespaces AdaBoost\relax }}{8}} \@writefile{lof}{\contentsline {figure}{\numberline {6}{\ignorespaces Ten features selected by AdaBoost\relax }}{9}} \newlabel{fig:tenWeakClassifier}{{6}{9}} \@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {}}}{9}} \@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {}}}{9}} \@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {}}}{9}} \@writefile{lof}{\contentsline {subfigure}{\numberline{(d)}{\ignorespaces {}}}{9}} \@writefile{lof}{\contentsline {subfigure}{\numberline{(e)}{\ignorespaces {}}}{9}} \@writefile{lof}{\contentsline {subfigure}{\numberline{(f)}{\ignorespaces {}}}{9}} \@writefile{lof}{\contentsline {subfigure}{\numberline{(g)}{\ignorespaces {}}}{9}} \@writefile{lof}{\contentsline {subfigure}{\numberline{(h)}{\ignorespaces {}}}{9}} \@writefile{lof}{\contentsline {subfigure}{\numberline{(i)}{\ignorespaces {}}}{9}} \@writefile{lof}{\contentsline {subfigure}{\numberline{(j)}{\ignorespaces {}}}{9}} \newlabel{fig:float}{{\caption@xref {fig:float}{ on input line 416}}{9}} \@writefile{lof}{\contentsline {figure}{\numberline {7}{\ignorespaces The final strong classifier with boosted 10 weak classifier and human face\relax }}{9}} \@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {boosted classifier by feature shown in figure \nobreakspace {}6\hbox {}}}}{9}} \@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {A human face from training set}}}{9}} \@writefile{lot}{\contentsline {table}{\numberline {1}{\ignorespaces Detail information about the final classifier\relax }}{10}} \newlabel{table:finalClassifier}{{1}{10}} \@writefile{lot}{\contentsline {table}{\numberline {2}{\ignorespaces A classifier predicts the class of a test example\relax }}{10}} \newlabel{table:predicts}{{2}{10}} \@writefile{lof}{\contentsline {figure}{\numberline {8}{\ignorespaces ROC cure computed from the images with 200 positive samples and 800 negative samples\relax }}{11}} \newlabel{fig:ROC}{{8}{11}} \@writefile{lot}{\contentsline {table}{\numberline {3}{\ignorespaces A classifier predicts the class of a test example\relax }}{11}} \newlabel{table:selectThreshold}{{3}{11}} \@writefile{toc}{\contentsline {section}{\numberline {6}Face Detection and optimaization}{13}} \@writefile{toc}{\contentsline {subsection}{\numberline {6.1}Search and detection}{13}} \@writefile{lof}{\contentsline {figure}{\numberline {9}{\ignorespaces Mona Lisa\relax }}{13}} \newlabel{fig:mona}{{9}{13}} \@writefile{toc}{\contentsline {subsection}{\numberline {6.2}Optimalization}{14}} \@writefile{loa}{\contentsline {algorithm}{\numberline {3}{\ignorespaces Deduce overlapped sub-window\relax }}{14}} \@writefile{lof}{\contentsline {figure}{\numberline {10}{\ignorespaces Comparision between two images. overlap\_threshold = 0.1, scale range $\in (0.2, 0.35)$ \relax }}{14}} \@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {Detection result of overlapped windows}}}{14}} \@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {Detection result after optimalization}}}{14}} \@writefile{toc}{\contentsline {section}{\numberline {7}Results}{15}} \@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {}}}{15}} \@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {scale = 0.4, Final\_th = 0.3}}}{15}} \@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {scale = 0.25}}}{16}} \@writefile{lof}{\contentsline {subfigure}{\numberline{(d)}{\ignorespaces {scale = 0.3, Final\_th = 1.6, overlap\_th = 0.1}}}{16}} \@writefile{lof}{\contentsline {subfigure}{\numberline{(e)}{\ignorespaces {scale = 0.2, Final\_th = 1.8, overlap\_th = 0.1}}}{17}} \@writefile{lof}{\contentsline {subfigure}{\numberline{(f)}{\ignorespaces {scale = 0.25, Final\_th = 1.8, overlap\_th = 0.1}}}{17}} \@writefile{lof}{\contentsline {subfigure}{\numberline{(g)}{\ignorespaces {scale = 0.25, Final\_th = 1.8, overlap\_th = 0.1}}}{17}} \@writefile{toc}{\contentsline {section}{\numberline {8}Details of Implementation}{18}} \@writefile{lof}{\contentsline {figure}{\numberline {11}{\ignorespaces scale = 0.2, Final\_th = 1.8, overlap\_th = 0.1\relax }}{18}} \@writefile{lof}{\contentsline {figure}{\numberline {12}{\ignorespaces optimalization with Multi-Processing\relax }}{18}} \bibstyle{unsrt} \bibdata{faceDetection}