
Introduction to Face Detection
A implementation which base on AdaBoost

ZIJIAN LIU
jasonleaster.github.io
XiangTan University

April 17, 2016

Abstract

We are going to introduce a method which will help us to do face detection. The
idea of this system are arised by viola. In this paper, I also contribute some scheme
for optimaization. Some face detection applications are based on nerual network but
it may not be friendly to construct a nerual network. The detection system in this
paper are useful and simple enough to be implemented. Data dirven application
cost a lot of time, I use a concurrent framework to accelerate the training process.
The time of extracting features from original images can be shorten obviously.
The key point in this system is using AdaBoost to select and combine some weak
classifier into a strong classifier. Finally, I demonstrate some test result of the our
face detection system.

Keywords: Face Detection, AdaBoost, Haar Feature, Machine Learning

Version 1.2
All Right Reserved

1

Contents

1 Preparation 3

2 Integral image 4

3 Haar Features 5

4 Weak Classifier 6

5 AdaBoost 8

6 Face Detection and optimaization 13
6.1 Search and detection . 13
6.2 Optimalization . 14

7 Results 15

8 Details of Implementation 18

2

1 Preparation

All training images get from MIT and CMU library and all program written by Python.
So you may have to install Python into your operating system. I just use basic Python
library like numpy, matplotlib, os and pylab. We don’t need OpenCV. We are doing the
same great thing. I use five section to introduce this project. Integrated image, Haar
features, AdaBoost and the test module.

Figure 1: Samples from the training set

The most application of Machine Learning are data driven. So, you may have a good
workstation or PC to run the system. Otherwise, it will cost your a lot of time to training
the model.

To elimilate the influence of lights from environments, we should pre-process the
images and normalize them.

I(x, y) =
Iori
x,y−µ√

1
M∗N ∑N

i=1 ∑M
j=1(Iori

i,j −µ)2
(1)

where µ is the mean value if the initial image which’s size is M-row x N-col. In our
training set, the size of image is 19x19 and all images are black and white. The training
set contains about 2429 face images and 4548 non-face images.

The denominator of the equation 1 is the standard deviation of the pixel intensity
values. Iori means the original image in the training set. I(x, y) represent the pixel at
x-row, y-col in the image which is after processing.

3

2 Integral image

The first step of the Viola-Jones [?, ?] face detection algorithm is to turn the input image
into an integral image. It’s easy to do this job something like integration.

ii =
∫∫

i(x′, y′) (2)

ii is the integral image and the i represent as the original image. Here is a demonstra-
tion in a normal image.

Figure 2: The left side is a normal image in our daily life. The right side is the integral
image of the origianl left side image.

The following figure are one of the sample face and it’s integral image.

Figure 3: Image on the left is a training sample(face00001.pgm) which is show by Python
matplotlib and the right side is the corresponding integral image. Here is a check point
if you want to determine whether your implementation is right or wrong.

What does the integral image use for ? This allow for the calculation of the sum of
all pixels inside any given rectangel using only for values – the boundary point of that
rectangel.

4

3 Haar Features

When we zoom the image we can find the image constructed with a lots of block(pixels).
They like rectangles with different pattern. That’s the essential of how the digital images
are constructed. If you have the basical understanding of digital image, you must know
that the digital image are constructed with a lots of pixels which’s value come from 0 to
255.

The detection system are based on the value of simple features but not using the
pixels directly. The reason given by Voila is that "features can act to encode ad-hoc
domain knowlege that is difficult to learn using a finite quantity of training data."

The features used in the system are haar-liked features [?], which is similary with
haar wavelets. There are other feature like LIF(Local Invariant Feature) [?] . But we
didn’t use it for the limitation of time.

From my perspective, it’s a trick to raise demention of samples.

We used four different pattern in our implementation. They are shown in the folloing
figure.

(a) Type I (b) Type II (c) Type III (d) Type IV

Figure 4: Four different types of Haar features.

Viola-Jones use 24*24 detetor window. Instead, I use 19*19 detector. Becasue my the
size of my training set images are 19*19. Diffient size of window have different number
of features. That’s all right.
The value of each features are calculated by sum of pixelsa which lie within the white
rectangles are subtracked from the sum of pixels in the grey rectangles.
In my implementation, features are represented as list like this "["II", x, y, w, h]". This
means that the type of the selected feature is "II". It start point is (x, y). The width of the
rectangle is w and the h is the height of the rectangle.
In Voila’s and others work, they used all the features within the detector window, the
number of that around 160,000. It’s too large and cost a lot of time to compute 16,000 for
every subwindow. In my implementation, I optimalized the feature generator which
will drop out some feature and make the computation process more faster. I only used
about 13,000 features to build our detection system.

5

4 Weak Classifier

Weak classifier[?] is a type of classifier which can not classify all samples correctly. But
they also do good job on classification. A good weak classifier can classify samples
with the correct rate over than 50%. Yes, it can be 99% or 51%. It just better than guess
randomly.

Algorithm 1 Simple weak classifier
Input: A set of feature responses { f j(x1), ..., f j(xn)} extracted by appliying the feature
f j to each training sample xi and associatd labels { y1, ..., yn }. A set of non-negative
weights { w1, ..., wn }

Output: θ is a threshold value. Attention! p ∈ {−1,+1}is a direction value. When the
mean value of positive samples smaller than the mean value of negative samples, the
direction value p is 1. otherwise, it’s -1.

g(fi; p; θ) =

{
1 if p f j(x) < pθ

0 if otherwise
(3)

e is the error rate of the result of classification by this weak classifier g. e must be
smaller than 0.5

Steps of algorithm

• Compute the weighted mean of the positive samples and negative samples.

µP =
∑n

i=1 wi f j(xi)yi

∑n
i=1 wiyi

, µN =
∑n

i=1 wi f j(xi)yi

∑n
i=1 wiyi

(4)

• Set the threshold to θ = 1
2 (µP + µN) .

• Compute the error associatd with the two possible values of the direction.

ε−1 =
n

∑
i=1

wi |yi − g(fi(xi);−1; θ)| (5)

ε+1 =
n

∑
i=1

wi |yi − g(fi(xi);+1; θ)| (6)

• Set p∗ = argmin
p∈{−1,+1}

εp∗

6

Figure 5: A simple weak classifier. The red curve is the histogram of face class and the
blue curve is the histogram of Non-Face class.

The figure above there show what a good weak classifier look like. The more overlap
between the two histogram and the more bad the result of classification by any possible
threshold. It’s important to know that the direction of classification depend on the error
rate of two type of sample set.

More detail, I show a pieace of code in the detection system. Reader can understand
what I have done more deeply.

for direction in [-1, 1]:
errorRate = 0.
for i in range(self.SampleNum):

if self._Mat[d][i] *direction < threshold * direction:
output[i] = LABEL_POSITIVE # positive label +1

else:
output[i] = LABEL_NEGATIVE # positive label -1

if output[i] != self._Tag[i]:
errorRate += self.weight[i]

if errorRate < minErrRate:
minErrRate = errorRate
bestDirection = direction

return minErrRate, threshold, bestDirection

7

5 AdaBoost

What’s the next step? We have got the weak classifier. Let’s use it to construct a strong
classifier by boosting [?].

With window size of 19*19 pixels of the detector, there are huge number of features
in the window. Every feature is a classifier. It also means that there are a lots of weak-
classifier. There is a problem that which classifier we should use to do the job about
classification.

There may have other solution like SVM, nerual network and other machine learning
algorithm. In this paper, we try to solve this problem by AdaBoost which is a very useful
and efficient algorithm to do classification.

Algorithm 2 AdaBoost
Input: Give sample (x1, y1), ..., (xn, yn) where y ∈ {−1,+1}

Output: G is the strong classifier which produce by this algorithm.

Steps of algorithm

• Initialize weights w1,i =
1

2m , 1
2l for yi = 0, 1 respectively.

• For t = 1, ..., T

1. normalize the weight wt,i =
wt,i

∑n
i=1 wt,i

2. select the best weak classifier with respect to the weighted error rate.

3. Define gt(x) = g(x, ft, pt, θt) where ft, pt, andθt are the minimizers of εt

4. Update the weights

• The final strong classifier is:

G(x) =

{
1 if ∑T

t=1 αtgt(x) >= 1
2 ∑T

t=1 αt

0 if otherwise
(7)

8

Here is a demonstration that the features which are selected by AdaBoost. For
presentation, there are 10 features in the following figure.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 6: Ten features selected by AdaBoost

(a) boosted classifier by feature shown in figure 6 (b) A human face from training set

Figure 7: The final strong classifier with boosted 10 weak classifier and human face

Here, I compare the final classifier image with a training sample of human face. You
will find that the more final classifier image look like to human face, the better final
classifier are.

Why not use a human face image as a classifier directly?
My answer is "Do you forget what means overfitting? "

9

Look at table 1, I show a detail information about the final classifier. All the
information are cached in local file /model/model.cache

Table 1: Detail information about the final classifier

Figure 1 2 3 4 5 6 7
Feature Number 5287 13455 5797 6091 15360 1988 1165
α (Voting power) 1.9266 1.4872 0.9625 1.0217 0.9213 0.7948 0.6828
p (Direction) +1 -1 +1 -1 +1 -1 +1
Figure 8 9 10
Feature Number 1214 7937 14491
α (Voting power) 0.7103 0.6336 0.6116
p (Direction) +1 +1 -1

We have got the final classifier. We also know the threshold of each selected weak
classifier. But what about the threshold of final classifier ? Here we should introduce
some concepts which are used in the definition of the ROC-curve.

Table 2: A classifier predicts the class of a test example

Label Predicted Class True Class
True-Positive (tp) Positive Positive
False-Positive(fp) Positive Negative
True-Negative (tn) Negative Negative
False-Negative(fn) Negative Positive

Our target is to try our best to detect more face and avoid to mis-detect a non-face
region as a face. That’s something listening like quadratic programming. When we want
to maximize the tpr(True-Postive Rate) and minimize the fpr(False-Negative Rate).

TruePostiveRate = tpr = ntp
ntp+n f n

(8)

FalsePositiveRate = f pr = n f p
ntn+n f p

(9)

ntp is the number of True-Postive etc. It’s not hard to understand that tpr and fpr will
vary depending on the threshold applied to the final strong classifier. The ROC(Receiver
operating characteristic) curve is a way to summarize this variation. It is a curve that
plots fpr Vs tpr as the threshold varies from −∞ to +∞.

Don’t forget we didn’t have a good threshold for our final classifier. The ROC curve
help us to choose a good threshold to do classification finally.

10

Figure 8: ROC cure computed from the images with 200 positive samples and 800
negative samples

With the limitation of my computer, I only used 1000 samples to training our model.
If my face detection system could run on more powerful workstation, I think the result
will be more beautiful.

Table 3: A classifier predicts the class of a test example

FinalThreshold -15.0 -6.62 -2.1 0.4 5.7 10.0
tpr 1.0 0.99 0.81 0.615 0.005 0.00
fpr 1.0 0.8275 0.27 0.1025 0.0025 0.00

We extracted some classical data from total set and table 3 show us that how the
tpr and fpr will vary when the final threshold is changing. In our experiment, the final
threshold is 3.1

11

Here is could glance at the detail about how to compute the ROC Curve in our
detection system.

def showROC(self):
tprs, fprs = [], []
best_tpr, best_fpr, best_th = 0., 1., None
for t in numpy.arange(AB_TH_MIN, AB_TH_MAX, 0.02):

output = self.prediction(self._Mat, t)

Num_tp, Num_fn, Num_tn, Num_fp = 0, 0, 0, 0
for i in range(self.SamplesNum):

if self._Tag[i] == LABEL_POSITIVE:
if output[i] == LABEL_POSITIVE:

Num_tp += 1
else:

Num_fn += 1
else:

if output[i] == LABEL_POSITIVE:
Num_fp += 1

else:
Num_tn += 1

tpr = Num_tp * 1./(Num_tp + Num_fn)
fpr = Num_fp * 1./(Num_tn + Num_fp)

if tpr >= best_tpr and fpr <= best_fpr:
best_tpr, best_fpr, best_th = tpr, fpr, t

tprs.append(tpr)
fprs.append(fpr)

12

6 Face Detection and optimaization

6.1 Search and detection

After we learnt a strong classifier. Now, we get the final part of the detection system.
Normaly, we do search work and travel all sub-window as figure 9 shown. Every
sub-window with size 19 x 19 may contain a face image, we may have to try every
sub-window, or almost every.

Figure 9: Mona Lisa

Becasue of the size of our detector is 19 x 19 and the training set image are also that
size. It’s very small for our daily image. It’s nessesary to resize the original image into a
smaller one.

In our implementation, I write a function scanImgFixedWin(image, scale) which take
two arguments @image and @scale. The @image is a single channel image and @scale is
in (0., 1.). This function return a list of sub-window which have a face which is predicted
by the AdaBoost. For convenient, the returned sub-window represent as a tuple (x, y,
w, h). (x, y) is the start point of the sub-window. w, h are the percentage of width and
height of the original image.

13

6.2 Optimalization

The figure below there shown a comparision between the detection result of the ordinary
detection system and the image after optimalization. You can view some overlapped
rectangel in the left figure below there. And there only one rectangle with the sinle
woman who is in the image.

Algorithm 3 Deduce overlapped sub-window
Inout: a set of sub-windows which are predicted as containing a human face and a
threshold to determine whether the sub-window should be reduced .
Output: set of deduced sub-windows.

for i from 1 to N do
for for j from i to N do

overlapArea = Si ∩ Sj
totalArea = Si ∪ Sj
overlapRate[i][j] = overlapArea / totalArea

end for
end for
reduced = [1, ...,i, ..., N]
for i from 1 to N do

for j from i+1 to N do
if overlapRate[i][j] > overlap_threshold
reduced[j] = reduced[i]

end for
end for
return reduced

(a) Detection result of over-
lapped windows

(b) Detection result after opti-
malization

Figure 10: Comparision between two images. overlap_threshold = 0.1, scale range
∈ (0.2, 0.35)

14

7 Results

Some test on normal images are shown below there.

(a)

(b) scale = 0.4, Final_th = 0.3

15

(c) scale = 0.25

(d) scale = 0.3, Final_th = 1.6, overlap_th = 0.1

16

(e) scale = 0.2, Final_th = 1.8, overlap_th = 0.1

(f) scale = 0.25, Final_th = 1.8, overlap_th = 0.1 (g) scale = 0.25, Final_th = 1.8, overlap_th = 0.1

17

8 Details of Implementation

Figure 11: scale = 0.2, Final_th = 1.8, overlap_th = 0.1

Figure 12: optimalization with Multi-Processing

18

Tell me and I forget, teach me and I may remember, involve me and I learn
– Benjamin Franklin

19

