You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

140 lines
3.5 KiB

"""
Programmer : EOF
File : image.py
Date : 2015.12.29
E-mail : jasonleaster@163.com
License : MIT License
Description :
This script file will initialize the image set
and read all images in the directory which is given by
user.
"""
import numpy
import os
import pylab
from matplotlib import pyplot
from matplotlib import image
class Image:
def __init__(self, fileName=None, label=None, Mat=None):
if fileName is not None:
self.imgName = fileName
self.img = image.imread(fileName)
if len(self.img.shape) == 3:
self.img = self.img[:, :, 1]
else:
assert Mat is not None
self.img = Mat
self.label = label
# self.stdImg = Image._normalization(self.img)
# self.iimg = Image._integrateImg(self.stdImg)
# self.vecImg = self.iimg.transpose().flatten()
self.vecImg = Image._integrateImg(Image._normalization(self.img)).transpose().flatten()
@staticmethod
def _integrateImg(image):
assert image.__class__ == numpy.ndarray
row, col = image.shape
# @iImg is integrated image of normalized image @self.stdImg
iImg = numpy.zeros((row, col))
"""
for i in xrange(0, row):
for j in xrange(0, col):
if j == 0:
iImg[i][j] = image[i][j]
else:
iImg[i][j] = iImg[i][j - 1] + image[i][j]
for j in xrange(0, col):
for i in xrange(1, row):
iImg[i][j] += iImg[i - 1][j]
"""
iImg = image.cumsum(axis=1).cumsum(axis=0)
return iImg
@staticmethod
def _normalization(image):
assert image.__class__ == numpy.ndarray
row, col = image.shape
# stdImag standardized image
stdImg = numpy.zeros((row, col))
"""
What image.sum() do is the same as the following code
but more faster than this.
for i in xrange(self.Row):
for j in xrange(self.Col):
sigma += image[i][j]
"""
# sigma = image.sum()
meanVal = image.mean()
stdValue = image.std()
if stdValue == 0:
stdValue = 1
stdImg = (image - meanVal) / stdValue
return stdImg
@staticmethod
def show(image=None):
if image == None:
return
pyplot.matshow(image)
pylab.show()
class ImageSet:
def __init__(self, imgDir=None, label=None, sampleNum=None):
assert isinstance(imgDir, str)
self.fileList = os.listdir(imgDir)
self.fileList.sort()
if sampleNum is None:
self.sampleNum = len(self.fileList)
else:
self.sampleNum = sampleNum
self.curFileIdx = self.sampleNum
self.label = label
self.images = [None for _ in range(self.sampleNum)]
processed = -10.
for i in range(self.sampleNum):
self.images[i] = Image(os.path.join(imgDir, self.fileList[i]), label)
if i % (self.sampleNum / 10) == 0:
processed += 10.
print("Loading ", processed, "%")
print("Loading 100 %\n")
def readNextImg(self):
img = Image(os.path.join(self.imgDir, self.fileList[self.curFileIdx]), self.label)
self.curFileIdx += 1
return img