diff --git a/20407106-董竹佳-计科2001.html b/20407106-董竹佳-计科2001.html deleted file mode 100644 index a5038c3..0000000 --- a/20407106-董竹佳-计科2001.html +++ /dev/null @@ -1,13970 +0,0 @@ - - -
- -# your code
-#递归
-s = 0
-def mul(n):
- if n==1:
- return 1
- return n*mul(n-1)
-
-for n in range(1,21):
- a = mul(n)
- s += a
-print(s)
-# your code
-list1=[9,7,8,3,2,1,55,6]
-x=len(list1)
-y=min(list1)
-z=max(list1)
-print("列表元素个数:",x,"最小数:",y,"最大数:",z)
-list2=[9,7,8,3,2,1,55,6]
-list2.append(10)
-print(list2)
-list3=[9,7,8,3,2,1,55,6]
-list3.remove(55)
-print(list3)
-TTTTTx
-TTTTxx
-TTTxxx
-TTxxxx
-Txxxxx
-
-# your code
-layer = 5
-for i in range(1,layer+1):
- #计算T的个数
- spce_num = layer - i+1
- for j in range(0,spce_num):
- print("T",end="")
- #计算x个数
- star_num = 6-spce_num
- for j in range(0,star_num):
- print("x",end="")
- print("")
-# your code
-# Filename : test.py
-# author by : www.runoob.com
-
-# 定义函数
-def add(x, y):
- """相加"""
-
- return x + y
-
-def subtract(x, y):
- """相减"""
-
- return x - y
-
-def multiply(x, y):
- """相乘"""
-
- return x * y
-
-def divide(x, y):
- """相除"""
-
- return x / y
-
-# 用户输入
-print("选择运算:")
-print("1、相加")
-print("2、相减")
-print("3、相乘")
-print("4、相除")
-
-choice = input("输入你的选择(1/2/3/4):")
-
-num1 = int(input("输入第一个数字: "))
-num2 = int(input("输入第二个数字: "))
-
-if choice == '1':
- print(num1,"+",num2,"=", add(num1,num2))
-
-elif choice == '2':
- print(num1,"-",num2,"=", subtract(num1,num2))
-
-elif choice == '3':
- print(num1,"*",num2,"=", multiply(num1,num2))
-
-elif choice == '4':
- print(num1,"/",num2,"=", divide(num1,num2))
-else:
- print("非法输入")
-# your code
-class Student:
- def __init__(self,name,age,*cou):
- self.name=name
- self.age=age
- self.course=cou
- def get_name(self):
- return self.name
- def get_age(self):
- return self.age
- def get_course(self):
- return max(max(self.course))
-zm=Student('zhangming',20,[69,88,100])
-print('学生姓名为:',zm.get_name(),'年龄为:',zm.get_age(),'最高分成绩为:',zm.get_course())
-| X | -Y | -X | -Y | -
|---|---|---|---|
| -3.00 | -4 | -0.15 | -255 | -
| -2.50 | -12 | -0.75 | -170 | -
| -1.75 | -50 | -1.25 | -100 | -
| -1.15 | -120 | -1.85 | -20 | -
| -0.50 | -205 | -2.45 | -14 | -
# your code
-# your code
-
-import matplotlib.pyplot as plt
-import matplotlib
-data = [4, 12, 50, 120, 205, 255, 170, 100, 20, 14]
-labels = ["-3.00", "-2.50", "-1.75", "-1.15", "-0.50", "0.15", "0.75", "1.25", "1.85", "2.45"]
-
-plt.bar(range(len(data)),data,width=0.5)
-plt.xticks(range(len(data)),labels)
-for i in range(len(data)):
- plt.text(x=i-0.05,y=data[i]+0.2,s = '%d'% data[i])
-plt.xlabel("x")
-plt.ylabel("y")
-plt.show()
-注:训练集:测试集=8:2,随机种子采用你学号后两位,例如你学号后两位=01,则random_state=1,如果最后两位=34,则random_state=34。最终结果打印出各个回归的w和b系数即可。
-| 序号 | -X1 | -X2 | -X3 | -X4 | -Y | -
|---|---|---|---|---|---|
| 1 | -7 | -26 | -6 | -60 | -78.5 | -
| 2 | -1 | -29 | -15 | -52 | -74.3 | -
| 3 | -11 | -56 | -8 | -20 | -104.3 | -
| 4 | -11 | -31 | -8 | -47 | -87.6 | -
| 5 | -7 | -52 | -6 | -33 | -95.9 | -
| 6 | -11 | -55 | -9 | -22 | -109.2 | -
| 7 | -3 | -71 | -17 | -6 | -102.7 | -
| 8 | -1 | -31 | -22 | -44 | -72.5 | -
| 9 | -2 | -54 | -18 | -22 | -93.1 | -
| 10 | -21 | -47 | -4 | -26 | -115.9 | -
| 11 | -1 | -40 | -23 | -34 | -83.8 | -
| 12 | -11 | -66 | -9 | -12 | -113.3 | -
| 13 | -10 | -68 | -8 | -12 | -109.4 | -
# your code
-# your code
-import pandas as pd
-from sklearn.model_selection import train_test_split
-from sklearn.linear_model import LinearRegression, Ridge, Lasso
-
-# 读取原始数据并创建数据框
-data = pd.DataFrame({
- 'X1': [7, 1, 11, 11, 7, 11, 3, 1, 2, 21, 1, 11, 10],
- 'X2': [26, 29, 56, 31, 52, 55, 71, 31, 54, 47, 40, 66, 68],
- 'X3': [6, 15, 8, 8, 6, 9, 17, 22, 18, 4, 23, 9, 13],
- 'X4': [60, 52, 20, 47, 33, 22, 6, 44, 22, 26, 34, 22, 22],
- 'Y': [78.5, 74.3, 104.3, 87.6, 95.9, 109.2, 102.7, 72.5, 93.1, 115.9, 83.8, 113.3, 109.4]
-})
-
-# 分离出自变量和因变量
-X = data[['X1', 'X2', 'X3', 'X4']]
-y = data['Y']
-
-# 将训练集和测试集按 8:2 分割,随机种子为学号后两位
-X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=25)
-
-# 线性回归模型
-linear_model = LinearRegression()
-linear_model.fit(X_train, y_train)
-
-# 输出线性回归的 w 和 b 系数
-print('线性回归 w:', linear_model.coef_)
-print('线性回归 b:', linear_model.intercept_)
-
-# 岭回归模型
-ridge_model = Ridge(alpha=1.0)
-ridge_model.fit(X_train, y_train)
-
-# 输出岭回归的 w 和 b 系数
-print('岭回归 w:', ridge_model.coef_)
-print('岭回归 b:', ridge_model.intercept_)
-
-# Lasso 回归模型
-lasso_model = Lasso(alpha=1.0)
-lasso_model.fit(X_train, y_train)
-
-# 输出 Lasso 回归的 w 和 b 系数
-print('Lasso 回归 w:', lasso_model.coef_)
-print('Lasso 回归 b:', lasso_model.intercept_)
-注:训练集:测试集=1:1,随机种子采用你学号后两位,例如你学号后两位=01,则random_state=1,如果最后两位=34,则random_state=34。最终结果输出你预测结果、实际结果以及模型得分三项。
-| 序号 | -年龄 | -收入 | -是否为学生 | -信誉 | -购买计算机 | -
|---|---|---|---|---|---|
| 1 | -<=30 | -高 | -否 | -中 | -否 | -
| 2 | -<=30 | -高 | -否 | -优 | -否 | -
| 3 | -31-40 | -高 | -否 | -中 | -是 | -
| 4 | ->40 | -中 | -否 | -中 | -是 | -
| 5 | ->40 | -低 | -是 | -中 | -是 | -
| 6 | ->40 | -低 | -是 | -优 | -否 | -
| 7 | -31-40 | -低 | -是 | -优 | -是 | -
| 8 | -<=30 | -中 | -否 | -中 | -否 | -
| 9 | -<=30 | -低 | -是 | -中 | -是 | -
| 10 | ->40 | -中 | -是 | -中 | -是 | -
| 11 | -<=30 | -中 | -是 | -优 | -是 | -
| 12 | -31-40 | -中 | -否 | -优 | -是 | -
| 13 | -31-40 | -高 | -是 | -中 | -是 | -
| 14 | ->40 | -中 | -否 | -优 | -否 | -
# your code
-import numpy as np
-import pandas as pd
-from sklearn import metrics
-# 导入高斯朴素贝叶斯分类器
-from sklearn.naive_bayes import GaussianNB
-from sklearn.model_selection import train_test_split
-
-x = np.array(
- [
- [1, 3, 0, 1, 0],
- [1, 3, 0, 2, 1],
- [2, 3, 0, 2, 1],
- [3, 2, 0, 1, 1],
- [3, 1, 1, 1, 1],
- [3, 1, 1, 2, 0],
- [2, 1, 1, 2, 1],
- [1, 2, 0, 1, 0],
- [1, 1, 1, 1, 1],
- [3, 2, 1, 1, 1],
- [1, 2, 1, 2, 1],
- [2, 2, 0, 2, 1],
- [2, 3, 1, 1, 1],
- [3, 2, 0, 2, 0],
- ]
-)
-
-y = np.array(
- [
- 0,1,1,1,1,0,1,0,1,1,1,1,1,0
- ]
-)
-X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.5, random_state=37)
-# 使用高斯朴素贝叶斯进行计算
-clf = GaussianNB()
-clf.fit(X_train, y_train)
-# 评估
-y_predict = clf.predict(X_test)
-score_gnb = metrics.accuracy_score(y_predict,y_test)
-
-print('该用户是否购买计算机:',y_predict)
-print(y_test)
-print(score_gnb)
-
-