From dde8d58fc54d1c2995d8112a0ba4413d7c345ca0 Mon Sep 17 00:00:00 2001 From: p49apuof2 <2013936064@qq.com> Date: Fri, 26 May 2023 08:57:18 +0800 Subject: [PATCH] ADD file via upload --- 20407106-董竹佳-计科2001.html | 13970 +++++++++++++++++++++++++++ 1 file changed, 13970 insertions(+) create mode 100644 20407106-董竹佳-计科2001.html diff --git a/20407106-董竹佳-计科2001.html b/20407106-董竹佳-计科2001.html new file mode 100644 index 0000000..a5038c3 --- /dev/null +++ b/20407106-董竹佳-计科2001.html @@ -0,0 +1,13970 @@ + + +
+ +# your code
+#递归
+s = 0
+def mul(n):
+ if n==1:
+ return 1
+ return n*mul(n-1)
+
+for n in range(1,21):
+ a = mul(n)
+ s += a
+print(s)
+# your code
+list1=[9,7,8,3,2,1,55,6]
+x=len(list1)
+y=min(list1)
+z=max(list1)
+print("列表元素个数:",x,"最小数:",y,"最大数:",z)
+list2=[9,7,8,3,2,1,55,6]
+list2.append(10)
+print(list2)
+list3=[9,7,8,3,2,1,55,6]
+list3.remove(55)
+print(list3)
+TTTTTx
+TTTTxx
+TTTxxx
+TTxxxx
+Txxxxx
+
+# your code
+layer = 5
+for i in range(1,layer+1):
+ #计算T的个数
+ spce_num = layer - i+1
+ for j in range(0,spce_num):
+ print("T",end="")
+ #计算x个数
+ star_num = 6-spce_num
+ for j in range(0,star_num):
+ print("x",end="")
+ print("")
+# your code
+# Filename : test.py
+# author by : www.runoob.com
+
+# 定义函数
+def add(x, y):
+ """相加"""
+
+ return x + y
+
+def subtract(x, y):
+ """相减"""
+
+ return x - y
+
+def multiply(x, y):
+ """相乘"""
+
+ return x * y
+
+def divide(x, y):
+ """相除"""
+
+ return x / y
+
+# 用户输入
+print("选择运算:")
+print("1、相加")
+print("2、相减")
+print("3、相乘")
+print("4、相除")
+
+choice = input("输入你的选择(1/2/3/4):")
+
+num1 = int(input("输入第一个数字: "))
+num2 = int(input("输入第二个数字: "))
+
+if choice == '1':
+ print(num1,"+",num2,"=", add(num1,num2))
+
+elif choice == '2':
+ print(num1,"-",num2,"=", subtract(num1,num2))
+
+elif choice == '3':
+ print(num1,"*",num2,"=", multiply(num1,num2))
+
+elif choice == '4':
+ print(num1,"/",num2,"=", divide(num1,num2))
+else:
+ print("非法输入")
+# your code
+class Student:
+ def __init__(self,name,age,*cou):
+ self.name=name
+ self.age=age
+ self.course=cou
+ def get_name(self):
+ return self.name
+ def get_age(self):
+ return self.age
+ def get_course(self):
+ return max(max(self.course))
+zm=Student('zhangming',20,[69,88,100])
+print('学生姓名为:',zm.get_name(),'年龄为:',zm.get_age(),'最高分成绩为:',zm.get_course())
+| X | +Y | +X | +Y | +
|---|---|---|---|
| -3.00 | +4 | +0.15 | +255 | +
| -2.50 | +12 | +0.75 | +170 | +
| -1.75 | +50 | +1.25 | +100 | +
| -1.15 | +120 | +1.85 | +20 | +
| -0.50 | +205 | +2.45 | +14 | +
# your code
+# your code
+
+import matplotlib.pyplot as plt
+import matplotlib
+data = [4, 12, 50, 120, 205, 255, 170, 100, 20, 14]
+labels = ["-3.00", "-2.50", "-1.75", "-1.15", "-0.50", "0.15", "0.75", "1.25", "1.85", "2.45"]
+
+plt.bar(range(len(data)),data,width=0.5)
+plt.xticks(range(len(data)),labels)
+for i in range(len(data)):
+ plt.text(x=i-0.05,y=data[i]+0.2,s = '%d'% data[i])
+plt.xlabel("x")
+plt.ylabel("y")
+plt.show()
+注:训练集:测试集=8:2,随机种子采用你学号后两位,例如你学号后两位=01,则random_state=1,如果最后两位=34,则random_state=34。最终结果打印出各个回归的w和b系数即可。
+| 序号 | +X1 | +X2 | +X3 | +X4 | +Y | +
|---|---|---|---|---|---|
| 1 | +7 | +26 | +6 | +60 | +78.5 | +
| 2 | +1 | +29 | +15 | +52 | +74.3 | +
| 3 | +11 | +56 | +8 | +20 | +104.3 | +
| 4 | +11 | +31 | +8 | +47 | +87.6 | +
| 5 | +7 | +52 | +6 | +33 | +95.9 | +
| 6 | +11 | +55 | +9 | +22 | +109.2 | +
| 7 | +3 | +71 | +17 | +6 | +102.7 | +
| 8 | +1 | +31 | +22 | +44 | +72.5 | +
| 9 | +2 | +54 | +18 | +22 | +93.1 | +
| 10 | +21 | +47 | +4 | +26 | +115.9 | +
| 11 | +1 | +40 | +23 | +34 | +83.8 | +
| 12 | +11 | +66 | +9 | +12 | +113.3 | +
| 13 | +10 | +68 | +8 | +12 | +109.4 | +
# your code
+# your code
+import pandas as pd
+from sklearn.model_selection import train_test_split
+from sklearn.linear_model import LinearRegression, Ridge, Lasso
+
+# 读取原始数据并创建数据框
+data = pd.DataFrame({
+ 'X1': [7, 1, 11, 11, 7, 11, 3, 1, 2, 21, 1, 11, 10],
+ 'X2': [26, 29, 56, 31, 52, 55, 71, 31, 54, 47, 40, 66, 68],
+ 'X3': [6, 15, 8, 8, 6, 9, 17, 22, 18, 4, 23, 9, 13],
+ 'X4': [60, 52, 20, 47, 33, 22, 6, 44, 22, 26, 34, 22, 22],
+ 'Y': [78.5, 74.3, 104.3, 87.6, 95.9, 109.2, 102.7, 72.5, 93.1, 115.9, 83.8, 113.3, 109.4]
+})
+
+# 分离出自变量和因变量
+X = data[['X1', 'X2', 'X3', 'X4']]
+y = data['Y']
+
+# 将训练集和测试集按 8:2 分割,随机种子为学号后两位
+X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=25)
+
+# 线性回归模型
+linear_model = LinearRegression()
+linear_model.fit(X_train, y_train)
+
+# 输出线性回归的 w 和 b 系数
+print('线性回归 w:', linear_model.coef_)
+print('线性回归 b:', linear_model.intercept_)
+
+# 岭回归模型
+ridge_model = Ridge(alpha=1.0)
+ridge_model.fit(X_train, y_train)
+
+# 输出岭回归的 w 和 b 系数
+print('岭回归 w:', ridge_model.coef_)
+print('岭回归 b:', ridge_model.intercept_)
+
+# Lasso 回归模型
+lasso_model = Lasso(alpha=1.0)
+lasso_model.fit(X_train, y_train)
+
+# 输出 Lasso 回归的 w 和 b 系数
+print('Lasso 回归 w:', lasso_model.coef_)
+print('Lasso 回归 b:', lasso_model.intercept_)
+注:训练集:测试集=1:1,随机种子采用你学号后两位,例如你学号后两位=01,则random_state=1,如果最后两位=34,则random_state=34。最终结果输出你预测结果、实际结果以及模型得分三项。
+| 序号 | +年龄 | +收入 | +是否为学生 | +信誉 | +购买计算机 | +
|---|---|---|---|---|---|
| 1 | +<=30 | +高 | +否 | +中 | +否 | +
| 2 | +<=30 | +高 | +否 | +优 | +否 | +
| 3 | +31-40 | +高 | +否 | +中 | +是 | +
| 4 | +>40 | +中 | +否 | +中 | +是 | +
| 5 | +>40 | +低 | +是 | +中 | +是 | +
| 6 | +>40 | +低 | +是 | +优 | +否 | +
| 7 | +31-40 | +低 | +是 | +优 | +是 | +
| 8 | +<=30 | +中 | +否 | +中 | +否 | +
| 9 | +<=30 | +低 | +是 | +中 | +是 | +
| 10 | +>40 | +中 | +是 | +中 | +是 | +
| 11 | +<=30 | +中 | +是 | +优 | +是 | +
| 12 | +31-40 | +中 | +否 | +优 | +是 | +
| 13 | +31-40 | +高 | +是 | +中 | +是 | +
| 14 | +>40 | +中 | +否 | +优 | +否 | +
# your code
+import numpy as np
+import pandas as pd
+from sklearn import metrics
+# 导入高斯朴素贝叶斯分类器
+from sklearn.naive_bayes import GaussianNB
+from sklearn.model_selection import train_test_split
+
+x = np.array(
+ [
+ [1, 3, 0, 1, 0],
+ [1, 3, 0, 2, 1],
+ [2, 3, 0, 2, 1],
+ [3, 2, 0, 1, 1],
+ [3, 1, 1, 1, 1],
+ [3, 1, 1, 2, 0],
+ [2, 1, 1, 2, 1],
+ [1, 2, 0, 1, 0],
+ [1, 1, 1, 1, 1],
+ [3, 2, 1, 1, 1],
+ [1, 2, 1, 2, 1],
+ [2, 2, 0, 2, 1],
+ [2, 3, 1, 1, 1],
+ [3, 2, 0, 2, 0],
+ ]
+)
+
+y = np.array(
+ [
+ 0,1,1,1,1,0,1,0,1,1,1,1,1,0
+ ]
+)
+X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.5, random_state=37)
+# 使用高斯朴素贝叶斯进行计算
+clf = GaussianNB()
+clf.fit(X_train, y_train)
+# 评估
+y_predict = clf.predict(X_test)
+score_gnb = metrics.accuracy_score(y_predict,y_test)
+
+print('该用户是否购买计算机:',y_predict)
+print(y_test)
+print(score_gnb)
+
+