|
|
|
|
# coding: utf-8
|
|
|
|
|
import sys, os
|
|
|
|
|
sys.path.append(os.pardir) # 为了导入父目录的文件而进行的设定
|
|
|
|
|
import pickle
|
|
|
|
|
import numpy as np
|
|
|
|
|
from collections import OrderedDict
|
|
|
|
|
from common.layers import *
|
|
|
|
|
from common.gradient import numerical_gradient
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class SimpleConvNet:
|
|
|
|
|
"""简单的ConvNet
|
|
|
|
|
|
|
|
|
|
conv - relu - pool - affine - relu - affine - softmax
|
|
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
|
----------
|
|
|
|
|
input_size : 输入大小(MNIST的情况下为784)
|
|
|
|
|
hidden_size_list : 隐藏层的神经元数量的列表(e.g. [100, 100, 100])
|
|
|
|
|
output_size : 输出大小(MNIST的情况下为10)
|
|
|
|
|
activation : 'relu' or 'sigmoid'
|
|
|
|
|
weight_init_std : 指定权重的标准差(e.g. 0.01)
|
|
|
|
|
指定'relu'或'he'的情况下设定“He的初始值”
|
|
|
|
|
指定'sigmoid'或'xavier'的情况下设定“Xavier的初始值”
|
|
|
|
|
"""
|
|
|
|
|
def __init__(self, input_dim=(1, 28, 28),
|
|
|
|
|
conv_param={'filter_num':30, 'filter_size':5, 'pad':0, 'stride':1},
|
|
|
|
|
hidden_size=100, output_size=10, weight_init_std=0.01):
|
|
|
|
|
filter_num = conv_param['filter_num']
|
|
|
|
|
filter_size = conv_param['filter_size']
|
|
|
|
|
filter_pad = conv_param['pad']
|
|
|
|
|
filter_stride = conv_param['stride']
|
|
|
|
|
input_size = input_dim[1]
|
|
|
|
|
conv_output_size = (input_size - filter_size + 2*filter_pad) / filter_stride + 1
|
|
|
|
|
pool_output_size = int(filter_num * (conv_output_size/2) * (conv_output_size/2))
|
|
|
|
|
|
|
|
|
|
# 初始化权重
|
|
|
|
|
self.params = {}
|
|
|
|
|
self.params['W1'] = weight_init_std * \
|
|
|
|
|
np.random.randn(filter_num, input_dim[0], filter_size, filter_size)
|
|
|
|
|
self.params['b1'] = np.zeros(filter_num)
|
|
|
|
|
self.params['W2'] = weight_init_std * \
|
|
|
|
|
np.random.randn(pool_output_size, hidden_size)
|
|
|
|
|
self.params['b2'] = np.zeros(hidden_size)
|
|
|
|
|
self.params['W3'] = weight_init_std * \
|
|
|
|
|
np.random.randn(hidden_size, output_size)
|
|
|
|
|
self.params['b3'] = np.zeros(output_size)
|
|
|
|
|
|
|
|
|
|
# 生成层
|
|
|
|
|
self.layers = OrderedDict()
|
|
|
|
|
self.layers['Conv1'] = Convolution(self.params['W1'], self.params['b1'],
|
|
|
|
|
conv_param['stride'], conv_param['pad'])
|
|
|
|
|
self.layers['Relu1'] = Relu()
|
|
|
|
|
self.layers['Pool1'] = Pooling(pool_h=2, pool_w=2, stride=2)
|
|
|
|
|
self.layers['Affine1'] = Affine(self.params['W2'], self.params['b2'])
|
|
|
|
|
self.layers['Relu2'] = Relu()
|
|
|
|
|
self.layers['Affine2'] = Affine(self.params['W3'], self.params['b3'])
|
|
|
|
|
|
|
|
|
|
self.last_layer = SoftmaxWithLoss()
|
|
|
|
|
|
|
|
|
|
def predict(self, x):
|
|
|
|
|
for layer in self.layers.values():
|
|
|
|
|
x = layer.forward(x)
|
|
|
|
|
|
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
def loss(self, x, t):
|
|
|
|
|
"""求损失函数
|
|
|
|
|
参数x是输入数据、t是教师标签
|
|
|
|
|
"""
|
|
|
|
|
y = self.predict(x)
|
|
|
|
|
return self.last_layer.forward(y, t)
|
|
|
|
|
|
|
|
|
|
def accuracy(self, x, t, batch_size=100):
|
|
|
|
|
if t.ndim != 1 : t = np.argmax(t, axis=1)
|
|
|
|
|
|
|
|
|
|
acc = 0.0
|
|
|
|
|
|
|
|
|
|
for i in range(int(x.shape[0] / batch_size)):
|
|
|
|
|
tx = x[i*batch_size:(i+1)*batch_size]
|
|
|
|
|
tt = t[i*batch_size:(i+1)*batch_size]
|
|
|
|
|
y = self.predict(tx)
|
|
|
|
|
y = np.argmax(y, axis=1)
|
|
|
|
|
acc += np.sum(y == tt)
|
|
|
|
|
|
|
|
|
|
return acc / x.shape[0]
|
|
|
|
|
|
|
|
|
|
def numerical_gradient(self, x, t):
|
|
|
|
|
"""求梯度(数值微分)
|
|
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
|
----------
|
|
|
|
|
x : 输入数据
|
|
|
|
|
t : 教师标签
|
|
|
|
|
|
|
|
|
|
Returns
|
|
|
|
|
-------
|
|
|
|
|
具有各层的梯度的字典变量
|
|
|
|
|
grads['W1']、grads['W2']、...是各层的权重
|
|
|
|
|
grads['b1']、grads['b2']、...是各层的偏置
|
|
|
|
|
"""
|
|
|
|
|
loss_w = lambda w: self.loss(x, t)
|
|
|
|
|
|
|
|
|
|
grads = {}
|
|
|
|
|
for idx in (1, 2, 3):
|
|
|
|
|
grads['W' + str(idx)] = numerical_gradient(loss_w, self.params['W' + str(idx)])
|
|
|
|
|
grads['b' + str(idx)] = numerical_gradient(loss_w, self.params['b' + str(idx)])
|
|
|
|
|
|
|
|
|
|
return grads
|
|
|
|
|
|
|
|
|
|
def gradient(self, x, t):
|
|
|
|
|
"""求梯度(误差反向传播法)
|
|
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
|
----------
|
|
|
|
|
x : 输入数据
|
|
|
|
|
t : 教师标签
|
|
|
|
|
|
|
|
|
|
Returns
|
|
|
|
|
-------
|
|
|
|
|
具有各层的梯度的字典变量
|
|
|
|
|
grads['W1']、grads['W2']、...是各层的权重
|
|
|
|
|
grads['b1']、grads['b2']、...是各层的偏置
|
|
|
|
|
"""
|
|
|
|
|
# forward
|
|
|
|
|
self.loss(x, t)
|
|
|
|
|
|
|
|
|
|
# backward
|
|
|
|
|
dout = 1
|
|
|
|
|
dout = self.last_layer.backward(dout)
|
|
|
|
|
|
|
|
|
|
layers = list(self.layers.values())
|
|
|
|
|
layers.reverse()
|
|
|
|
|
for layer in layers:
|
|
|
|
|
dout = layer.backward(dout)
|
|
|
|
|
|
|
|
|
|
# 设定
|
|
|
|
|
grads = {}
|
|
|
|
|
grads['W1'], grads['b1'] = self.layers['Conv1'].dW, self.layers['Conv1'].db
|
|
|
|
|
grads['W2'], grads['b2'] = self.layers['Affine1'].dW, self.layers['Affine1'].db
|
|
|
|
|
grads['W3'], grads['b3'] = self.layers['Affine2'].dW, self.layers['Affine2'].db
|
|
|
|
|
|
|
|
|
|
return grads
|
|
|
|
|
|
|
|
|
|
def save_params(self, file_name="params.pkl"):
|
|
|
|
|
params = {}
|
|
|
|
|
for key, val in self.params.items():
|
|
|
|
|
params[key] = val
|
|
|
|
|
with open(file_name, 'wb') as f:
|
|
|
|
|
pickle.dump(params, f)
|
|
|
|
|
|
|
|
|
|
def load_params(self, file_name="params.pkl"):
|
|
|
|
|
with open(file_name, 'rb') as f:
|
|
|
|
|
params = pickle.load(f)
|
|
|
|
|
for key, val in params.items():
|
|
|
|
|
self.params[key] = val
|
|
|
|
|
|
|
|
|
|
for i, key in enumerate(['Conv1', 'Affine1', 'Affine2']):
|
|
|
|
|
self.layers[key].W = self.params['W' + str(i+1)]
|
|
|
|
|
self.layers[key].b = self.params['b' + str(i+1)]
|