|
|
|
@ -0,0 +1,131 @@
|
|
|
|
|
# coding: utf-8
|
|
|
|
|
try:
|
|
|
|
|
import urllib.request
|
|
|
|
|
except ImportError:
|
|
|
|
|
raise ImportError('You should use Python 3.x')
|
|
|
|
|
import os.path
|
|
|
|
|
import gzip
|
|
|
|
|
import pickle
|
|
|
|
|
import os
|
|
|
|
|
import numpy as np
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
url_base = 'http://yann.lecun.com/exdb/mnist/'
|
|
|
|
|
key_file = {
|
|
|
|
|
'train_img':'train-images-idx3-ubyte.gz',
|
|
|
|
|
'train_label':'train-labels-idx1-ubyte.gz',
|
|
|
|
|
'test_img':'t10k-images-idx3-ubyte.gz',
|
|
|
|
|
'test_label':'t10k-labels-idx1-ubyte.gz'
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
dataset_dir = os.path.dirname(os.path.abspath(__file__))
|
|
|
|
|
save_file = dataset_dir + "/mnist.pkl"
|
|
|
|
|
|
|
|
|
|
train_num = 60000
|
|
|
|
|
test_num = 10000
|
|
|
|
|
img_dim = (1, 28, 28)
|
|
|
|
|
img_size = 784
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _download(file_name):
|
|
|
|
|
file_path = dataset_dir + "/" + file_name
|
|
|
|
|
|
|
|
|
|
if os.path.exists(file_path):
|
|
|
|
|
return
|
|
|
|
|
|
|
|
|
|
print("Downloading " + file_name + " ... ")
|
|
|
|
|
urllib.request.urlretrieve(url_base + file_name, file_path)
|
|
|
|
|
print("Done")
|
|
|
|
|
|
|
|
|
|
def download_mnist():
|
|
|
|
|
for v in key_file.values():
|
|
|
|
|
_download(v)
|
|
|
|
|
|
|
|
|
|
def _load_label(file_name):
|
|
|
|
|
file_path = dataset_dir + "/" + file_name
|
|
|
|
|
|
|
|
|
|
print("Converting " + file_name + " to NumPy Array ...")
|
|
|
|
|
with gzip.open(file_path, 'rb') as f:
|
|
|
|
|
labels = np.frombuffer(f.read(), np.uint8, offset=8)
|
|
|
|
|
print("Done")
|
|
|
|
|
|
|
|
|
|
return labels
|
|
|
|
|
|
|
|
|
|
def _load_img(file_name):
|
|
|
|
|
file_path = dataset_dir + "/" + file_name
|
|
|
|
|
|
|
|
|
|
print("Converting " + file_name + " to NumPy Array ...")
|
|
|
|
|
with gzip.open(file_path, 'rb') as f:
|
|
|
|
|
data = np.frombuffer(f.read(), np.uint8, offset=16)
|
|
|
|
|
data = data.reshape(-1, img_size)
|
|
|
|
|
print("Done")
|
|
|
|
|
|
|
|
|
|
return data
|
|
|
|
|
|
|
|
|
|
def _convert_numpy():
|
|
|
|
|
dataset = {}
|
|
|
|
|
dataset['train_img'] = _load_img(key_file['train_img'])
|
|
|
|
|
dataset['train_label'] = _load_label(key_file['train_label'])
|
|
|
|
|
dataset['test_img'] = _load_img(key_file['test_img'])
|
|
|
|
|
dataset['test_label'] = _load_label(key_file['test_label'])
|
|
|
|
|
|
|
|
|
|
return dataset
|
|
|
|
|
|
|
|
|
|
def init_mnist():
|
|
|
|
|
'''
|
|
|
|
|
Note:已将数据集下载至本地,第一次加载会将数据集保存成pickle
|
|
|
|
|
'''
|
|
|
|
|
# download_mnist()
|
|
|
|
|
dataset = _convert_numpy()
|
|
|
|
|
print("Creating pickle file ...")
|
|
|
|
|
with open(save_file, 'wb') as f:
|
|
|
|
|
pickle.dump(dataset, f, -1)
|
|
|
|
|
print("Done!")
|
|
|
|
|
|
|
|
|
|
def _change_one_hot_label(X):
|
|
|
|
|
T = np.zeros((X.size, 10))
|
|
|
|
|
for idx, row in enumerate(T):
|
|
|
|
|
row[X[idx]] = 1
|
|
|
|
|
|
|
|
|
|
return T
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def load_mnist(normalize=True, flatten=True, one_hot_label=False):
|
|
|
|
|
"""读入MNIST数据集
|
|
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
|
----------
|
|
|
|
|
normalize : 将图像的像素值正规化为0.0~1.0
|
|
|
|
|
one_hot_label :
|
|
|
|
|
one_hot_label为True的情况下,标签作为one-hot数组返回
|
|
|
|
|
one-hot数组是指[0,0,1,0,0,0,0,0,0,0]这样的数组
|
|
|
|
|
flatten : 是否将图像展开为一维数组
|
|
|
|
|
|
|
|
|
|
Returns
|
|
|
|
|
-------
|
|
|
|
|
(训练图像, 训练标签), (测试图像, 测试标签)
|
|
|
|
|
"""
|
|
|
|
|
if not os.path.exists(save_file):
|
|
|
|
|
init_mnist()
|
|
|
|
|
|
|
|
|
|
with open(save_file, 'rb') as f:
|
|
|
|
|
dataset = pickle.load(f)
|
|
|
|
|
|
|
|
|
|
if normalize:
|
|
|
|
|
for key in ('train_img', 'test_img'):
|
|
|
|
|
dataset[key] = dataset[key].astype(np.float32)
|
|
|
|
|
dataset[key] /= 255.0
|
|
|
|
|
|
|
|
|
|
if one_hot_label:
|
|
|
|
|
dataset['train_label'] = _change_one_hot_label(dataset['train_label'])
|
|
|
|
|
dataset['test_label'] = _change_one_hot_label(dataset['test_label'])
|
|
|
|
|
|
|
|
|
|
if not flatten:
|
|
|
|
|
for key in ('train_img', 'test_img'):
|
|
|
|
|
dataset[key] = dataset[key].reshape(-1, 1, 28, 28)
|
|
|
|
|
|
|
|
|
|
return (dataset['train_img'], dataset['train_label']), (dataset['test_img'], dataset['test_label'])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
|
init_mnist()
|