|
|
|
@ -0,0 +1,130 @@
|
|
|
|
|
# coding: utf-8
|
|
|
|
|
import numpy as np
|
|
|
|
|
|
|
|
|
|
class SGD:
|
|
|
|
|
|
|
|
|
|
"""随机梯度下降法(Stochastic Gradient Descent)"""
|
|
|
|
|
|
|
|
|
|
def __init__(self, lr=0.01):
|
|
|
|
|
self.lr = lr
|
|
|
|
|
|
|
|
|
|
def update(self, params, grads):
|
|
|
|
|
for key in params.keys():
|
|
|
|
|
params[key] -= self.lr * grads[key]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class Momentum:
|
|
|
|
|
|
|
|
|
|
"""Momentum SGD"""
|
|
|
|
|
|
|
|
|
|
def __init__(self, lr=0.01, momentum=0.9):
|
|
|
|
|
self.lr = lr
|
|
|
|
|
self.momentum = momentum
|
|
|
|
|
self.v = None
|
|
|
|
|
|
|
|
|
|
def update(self, params, grads):
|
|
|
|
|
if self.v is None:
|
|
|
|
|
self.v = {}
|
|
|
|
|
for key, val in params.items():
|
|
|
|
|
self.v[key] = np.zeros_like(val)
|
|
|
|
|
|
|
|
|
|
for key in params.keys():
|
|
|
|
|
self.v[key] = self.momentum*self.v[key] - self.lr*grads[key]
|
|
|
|
|
params[key] += self.v[key]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class Nesterov:
|
|
|
|
|
|
|
|
|
|
"""Nesterov's Accelerated Gradient (http://arxiv.org/abs/1212.0901)"""
|
|
|
|
|
|
|
|
|
|
def __init__(self, lr=0.01, momentum=0.9):
|
|
|
|
|
self.lr = lr
|
|
|
|
|
self.momentum = momentum
|
|
|
|
|
self.v = None
|
|
|
|
|
|
|
|
|
|
def update(self, params, grads):
|
|
|
|
|
if self.v is None:
|
|
|
|
|
self.v = {}
|
|
|
|
|
for key, val in params.items():
|
|
|
|
|
self.v[key] = np.zeros_like(val)
|
|
|
|
|
|
|
|
|
|
for key in params.keys():
|
|
|
|
|
self.v[key] *= self.momentum
|
|
|
|
|
self.v[key] -= self.lr * grads[key]
|
|
|
|
|
params[key] += self.momentum * self.momentum * self.v[key]
|
|
|
|
|
params[key] -= (1 + self.momentum) * self.lr * grads[key]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class AdaGrad:
|
|
|
|
|
|
|
|
|
|
"""AdaGrad"""
|
|
|
|
|
|
|
|
|
|
def __init__(self, lr=0.01):
|
|
|
|
|
self.lr = lr
|
|
|
|
|
self.h = None
|
|
|
|
|
|
|
|
|
|
def update(self, params, grads):
|
|
|
|
|
if self.h is None:
|
|
|
|
|
self.h = {}
|
|
|
|
|
for key, val in params.items():
|
|
|
|
|
self.h[key] = np.zeros_like(val)
|
|
|
|
|
|
|
|
|
|
for key in params.keys():
|
|
|
|
|
self.h[key] += grads[key] * grads[key]
|
|
|
|
|
params[key] -= self.lr * grads[key] / (np.sqrt(self.h[key]) + 1e-7)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class RMSprop:
|
|
|
|
|
|
|
|
|
|
"""RMSprop"""
|
|
|
|
|
|
|
|
|
|
def __init__(self, lr=0.01, decay_rate = 0.99):
|
|
|
|
|
self.lr = lr
|
|
|
|
|
self.decay_rate = decay_rate
|
|
|
|
|
self.h = None
|
|
|
|
|
|
|
|
|
|
def update(self, params, grads):
|
|
|
|
|
if self.h is None:
|
|
|
|
|
self.h = {}
|
|
|
|
|
for key, val in params.items():
|
|
|
|
|
self.h[key] = np.zeros_like(val)
|
|
|
|
|
|
|
|
|
|
for key in params.keys():
|
|
|
|
|
self.h[key] *= self.decay_rate
|
|
|
|
|
self.h[key] += (1 - self.decay_rate) * grads[key] * grads[key]
|
|
|
|
|
params[key] -= self.lr * grads[key] / (np.sqrt(self.h[key]) + 1e-7)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class Adam:
|
|
|
|
|
|
|
|
|
|
"""Adam (http://arxiv.org/abs/1412.6980v8)"""
|
|
|
|
|
|
|
|
|
|
def __init__(self, lr=0.001, beta1=0.9, beta2=0.999):
|
|
|
|
|
self.lr = lr
|
|
|
|
|
self.beta1 = beta1
|
|
|
|
|
self.beta2 = beta2
|
|
|
|
|
self.iter = 0
|
|
|
|
|
self.m = None
|
|
|
|
|
self.v = None
|
|
|
|
|
|
|
|
|
|
def update(self, params, grads):
|
|
|
|
|
if self.m is None:
|
|
|
|
|
self.m, self.v = {}, {}
|
|
|
|
|
for key, val in params.items():
|
|
|
|
|
self.m[key] = np.zeros_like(val)
|
|
|
|
|
self.v[key] = np.zeros_like(val)
|
|
|
|
|
|
|
|
|
|
self.iter += 1
|
|
|
|
|
lr_t = self.lr * np.sqrt(1.0 - self.beta2**self.iter) / (1.0 - self.beta1**self.iter)
|
|
|
|
|
|
|
|
|
|
for key in params.keys():
|
|
|
|
|
#self.m[key] = self.beta1*self.m[key] + (1-self.beta1)*grads[key]
|
|
|
|
|
#self.v[key] = self.beta2*self.v[key] + (1-self.beta2)*(grads[key]**2)
|
|
|
|
|
self.m[key] += (1 - self.beta1) * (grads[key] - self.m[key])
|
|
|
|
|
self.v[key] += (1 - self.beta2) * (grads[key]**2 - self.v[key])
|
|
|
|
|
|
|
|
|
|
params[key] -= lr_t * self.m[key] / (np.sqrt(self.v[key]) + 1e-7)
|
|
|
|
|
|
|
|
|
|
#unbias_m += (1 - self.beta1) * (grads[key] - self.m[key]) # correct bias
|
|
|
|
|
#unbisa_b += (1 - self.beta2) * (grads[key]*grads[key] - self.v[key]) # correct bias
|
|
|
|
|
#params[key] += self.lr * unbias_m / (np.sqrt(unbisa_b) + 1e-7)
|