diff --git a/simple_convnet.py b/simple_convnet.py deleted file mode 100644 index af0651b..0000000 --- a/simple_convnet.py +++ /dev/null @@ -1,160 +0,0 @@ -# coding: utf-8 -import sys, os -sys.path.append(os.pardir) # 为了导入父目录的文件而进行的设定 -import pickle -import numpy as np -from collections import OrderedDict -from common.layers import * -from common.gradient import numerical_gradient - - -class SimpleConvNet: - """简单的ConvNet - - conv - relu - pool - affine - relu - affine - softmax - - Parameters - ---------- - input_size : 输入大小(MNIST的情况下为784) - hidden_size_list : 隐藏层的神经元数量的列表(e.g. [100, 100, 100]) - output_size : 输出大小(MNIST的情况下为10) - activation : 'relu' or 'sigmoid' - weight_init_std : 指定权重的标准差(e.g. 0.01) - 指定'relu'或'he'的情况下设定“He的初始值” - 指定'sigmoid'或'xavier'的情况下设定“Xavier的初始值” - """ - def __init__(self, input_dim=(1, 28, 28), - conv_param={'filter_num':30, 'filter_size':5, 'pad':0, 'stride':1}, - hidden_size=100, output_size=10, weight_init_std=0.01): - filter_num = conv_param['filter_num'] - filter_size = conv_param['filter_size'] - filter_pad = conv_param['pad'] - filter_stride = conv_param['stride'] - input_size = input_dim[1] - conv_output_size = (input_size - filter_size + 2*filter_pad) / filter_stride + 1 - pool_output_size = int(filter_num * (conv_output_size/2) * (conv_output_size/2)) - - # 初始化权重 - self.params = {} - self.params['W1'] = weight_init_std * \ - np.random.randn(filter_num, input_dim[0], filter_size, filter_size) - self.params['b1'] = np.zeros(filter_num) - self.params['W2'] = weight_init_std * \ - np.random.randn(pool_output_size, hidden_size) - self.params['b2'] = np.zeros(hidden_size) - self.params['W3'] = weight_init_std * \ - np.random.randn(hidden_size, output_size) - self.params['b3'] = np.zeros(output_size) - - # 生成层 - self.layers = OrderedDict() - self.layers['Conv1'] = Convolution(self.params['W1'], self.params['b1'], - conv_param['stride'], conv_param['pad']) - self.layers['Relu1'] = Relu() - self.layers['Pool1'] = Pooling(pool_h=2, pool_w=2, stride=2) - self.layers['Affine1'] = Affine(self.params['W2'], self.params['b2']) - self.layers['Relu2'] = Relu() - self.layers['Affine2'] = Affine(self.params['W3'], self.params['b3']) - - self.last_layer = SoftmaxWithLoss() - - def predict(self, x): - for layer in self.layers.values(): - x = layer.forward(x) - - return x - - def loss(self, x, t): - """求损失函数 - 参数x是输入数据、t是教师标签 - """ - y = self.predict(x) - return self.last_layer.forward(y, t) - - def accuracy(self, x, t, batch_size=100): - if t.ndim != 1 : t = np.argmax(t, axis=1) - - acc = 0.0 - - for i in range(int(x.shape[0] / batch_size)): - tx = x[i*batch_size:(i+1)*batch_size] - tt = t[i*batch_size:(i+1)*batch_size] - y = self.predict(tx) - y = np.argmax(y, axis=1) - acc += np.sum(y == tt) - - return acc / x.shape[0] - - def numerical_gradient(self, x, t): - """求梯度(数值微分) - - Parameters - ---------- - x : 输入数据 - t : 教师标签 - - Returns - ------- - 具有各层的梯度的字典变量 - grads['W1']、grads['W2']、...是各层的权重 - grads['b1']、grads['b2']、...是各层的偏置 - """ - loss_w = lambda w: self.loss(x, t) - - grads = {} - for idx in (1, 2, 3): - grads['W' + str(idx)] = numerical_gradient(loss_w, self.params['W' + str(idx)]) - grads['b' + str(idx)] = numerical_gradient(loss_w, self.params['b' + str(idx)]) - - return grads - - def gradient(self, x, t): - """求梯度(误差反向传播法) - - Parameters - ---------- - x : 输入数据 - t : 教师标签 - - Returns - ------- - 具有各层的梯度的字典变量 - grads['W1']、grads['W2']、...是各层的权重 - grads['b1']、grads['b2']、...是各层的偏置 - """ - # forward - self.loss(x, t) - - # backward - dout = 1 - dout = self.last_layer.backward(dout) - - layers = list(self.layers.values()) - layers.reverse() - for layer in layers: - dout = layer.backward(dout) - - # 设定 - grads = {} - grads['W1'], grads['b1'] = self.layers['Conv1'].dW, self.layers['Conv1'].db - grads['W2'], grads['b2'] = self.layers['Affine1'].dW, self.layers['Affine1'].db - grads['W3'], grads['b3'] = self.layers['Affine2'].dW, self.layers['Affine2'].db - - return grads - - def save_params(self, file_name="params.pkl"): - params = {} - for key, val in self.params.items(): - params[key] = val - with open(file_name, 'wb') as f: - pickle.dump(params, f) - - def load_params(self, file_name="params.pkl"): - with open(file_name, 'rb') as f: - params = pickle.load(f) - for key, val in params.items(): - self.params[key] = val - - for i, key in enumerate(['Conv1', 'Affine1', 'Affine2']): - self.layers[key].W = self.params['W' + str(i+1)] - self.layers[key].b = self.params['b' + str(i+1)] \ No newline at end of file