diff --git a/20407127-刘晋君-计科2001班.html b/20407127-刘晋君-计科2001班.html new file mode 100644 index 0000000..37b21e1 --- /dev/null +++ b/20407127-刘晋君-计科2001班.html @@ -0,0 +1,15516 @@ + + +
+ + +total = 0
+factorial = 1
+for i in range(1, 21):
+ factorial *= i # 计算 i! 的值
+ total += factorial #累加 factorial 的值
+print(total)
+
2561327494111820313 ++
s = [9, 7, 8, 3, 2, 1, 55, 6]
+# 计算列表元素的个数
+num = len(s)
+print("元素个数为:", num)
+
+# 找到列表中的最大数和最小数
+max_num = max(s)
+min_num = min(s)
+print("最大数为:", max_num)
+print("最小数为:", min_num)
+
+# 添加一个元素10
+s.append(10)
+print("添加元素10后的列表为:", s)
+
+# 删除一个元素55
+s.remove(55)
+print("删除元素55后的列表为:", s)
+
元素个数为: 8 +最大数为: 55 +最小数为: 1 +添加元素10后的列表为: [9, 7, 8, 3, 2, 1, 55, 6, 10] +删除元素55后的列表为: [9, 7, 8, 3, 2, 1, 6, 10] ++
TTTTTx
+TTTTxx
+TTTxxx
+TTxxxx
+Txxxxx
+
+for i in range(5):
+ for j in range(5 - i):
+ print("T", end="")
+ for k in range(i):
+ print("x", end="")
+ print("")
+
TTTTT +TTTTx +TTTxx +TTxxx +Txxxx ++
def add(x, y):
+ return x + y
+def subtract(x, y):
+ return x - y
+def multiply(x, y):
+ return x * y
+def divide(x, y):
+ if y == 0:
+ return "除数不能为0"
+ else:
+ return x / y
+
+print("选择要进行的运算:")
+print("1. 加法")
+print("2. 减法")
+print("3. 乘法")
+print("4. 除法")
+
+choice = input("请输入您的选择(1/2/3/4):")
+num1 = int(input("请输入第一个数字:"))
+num2 = int(input("请输入第二个数字:"))
+
+if choice == '1':
+ print(num1, "+", num2, "=", add(num1, num2))
+elif choice == '2':
+ print(num1, "-", num2, "=", subtract(num1, num2))
+elif choice == '3':
+ print(num1, "*", num2, "=", multiply(num1, num2))
+elif choice == '4':
+ print(num1, "/", num2, "=", divide(num1, num2))
+else:
+ print("非法输入")
+
选择要进行的运算: +1. 加法 +2. 减法 +3. 乘法 +4. 除法 +请输入您的选择(1/2/3/4):3 +请输入第一个数字:56 +请输入第二个数字:2 +56 * 2 = 112 ++
class Student:
+ def __init__(self, name, age, course):
+ self.name = name
+ self.age = age
+ self.course = course
+ def get_name(self):
+ return self.name
+ def get_age(self):
+ return self.age
+ def get_course(self):
+ return max(self.course)
+
+st = Student('zhangming', 20, [69, 88, 100])
+print("学生姓名:", st.get_name())
+print("学生年龄:", st.get_age())
+print("最高分数:", st.get_course())
+
学生姓名: zhangming +学生年龄: 20 +最高分数: 100 ++
X | +Y | +X | +Y | +
---|---|---|---|
-3.00 | +4 | +0.15 | +255 | +
-2.50 | +12 | +0.75 | +170 | +
-1.75 | +50 | +1.25 | +100 | +
-1.15 | +120 | +1.85 | +20 | +
-0.50 | +205 | +2.45 | +14 | +
import matplotlib.pyplot as plt
+
+x = [-3.00,-2.50,-1.75,-1.15,-0.50,0.15,0.75,1.25,1.85,2.45]
+y = [4,12,50,120,205,255,170,100,20,14]
+
+plt.bar(x, y, width=0.2)
+plt.xlabel('X')
+plt.ylabel('Y')
+
+plt.show()
+
注:训练集:测试集=8:2,随机种子采用你学号后两位,例如你学号后两位=01,则random_state=1,如果最后两位=34,则random_state=34。最终结果打印出各个回归的w和b系数即可。
+序号 | +X1 | +X2 | +X3 | +X4 | +Y | +
---|---|---|---|---|---|
1 | +7 | +26 | +6 | +60 | +78.5 | +
2 | +1 | +29 | +15 | +52 | +74.3 | +
3 | +11 | +56 | +8 | +20 | +104.3 | +
4 | +11 | +31 | +8 | +47 | +87.6 | +
5 | +7 | +52 | +6 | +33 | +95.9 | +
6 | +11 | +55 | +9 | +22 | +109.2 | +
7 | +3 | +71 | +17 | +6 | +102.7 | +
8 | +1 | +31 | +22 | +44 | +72.5 | +
9 | +2 | +54 | +18 | +22 | +93.1 | +
10 | +21 | +47 | +4 | +26 | +115.9 | +
11 | +1 | +40 | +23 | +34 | +83.8 | +
12 | +11 | +66 | +9 | +12 | +113.3 | +
13 | +10 | +68 | +8 | +12 | +109.4 | +
import numpy as np
+from sklearn.model_selection import train_test_split
+
+data = np.array([[ 7, 26, 6, 60, 78.5],
+ [ 1, 29, 15, 52, 74.3],
+ [11, 56, 8, 20,104.3],
+ [11, 31, 8, 47, 87.6],
+ [ 7, 52, 6, 33, 95.9],
+ [11, 55, 9, 22,109.2],
+ [ 3, 71, 17, 6,102.7],
+ [ 1, 31, 22, 44, 72.5],
+ [ 2, 54, 18, 22, 93.1],
+ [21, 47, 4, 26,115.9],
+ [ 1, 40, 23, 34, 83.8],
+ [11, 66, 9, 12,113.3],
+ [10, 68, 8, 12,109.4]])
+
+X = data[:,0:4]
+y = data[:,4]
+
+X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=27)
+
+#线性回归
+from sklearn.linear_model import LinearRegression
+
+lr = LinearRegression()
+lr.fit(X_train, y_train)
+
+print('线性回归:')
+print('w:', lr.coef_)
+print('b:', lr.intercept_)
+
+#岭回归
+from sklearn.linear_model import Ridge
+
+ridge = Ridge(alpha=1.0) # alpha值可以更换试验寻找最好的效果
+ridge.fit(X_train, y_train)
+
+print('岭回归:')
+print('w:', ridge.coef_)
+print('b:', ridge.intercept_)
+
+#Lasso回归
+from sklearn.linear_model import Lasso
+
+lasso = Lasso(alpha=1.0) # alpha值可以更换试验寻找最好的效果
+lasso.fit(X_train, y_train)
+
+print('Lasso回归:')
+print('w:', lasso.coef_)
+print('b:', lasso.intercept_)
+
线性回归: +w: [1.93112493 1.168554 0.55044472 0.41963723] +b: 6.607111440049238 +岭回归: +w: [1.63846223 0.86160385 0.25159327 0.12417071] +b: 35.87524849162193 +Lasso回归: +w: [ 1.37563078 0.6118766 -0. -0.11527768] +b: 59.94892439561982 ++
注:训练集:测试集=1:1,随机种子采用你学号后两位,例如你学号后两位=01,则random_state=1,如果最后两位=34,则random_state=34。最终结果输出你预测结果、实际结果以及模型得分三项。
+序号 | +年龄 | +收入 | +是否为学生 | +信誉 | +购买计算机 | +
---|---|---|---|---|---|
1 | +<=30 | +高 | +否 | +中 | +否 | +
2 | +<=30 | +高 | +否 | +优 | +否 | +
3 | +31-40 | +高 | +否 | +中 | +是 | +
4 | +>40 | +中 | +否 | +中 | +是 | +
5 | +>40 | +低 | +是 | +中 | +是 | +
6 | +>40 | +低 | +是 | +优 | +否 | +
7 | +31-40 | +低 | +是 | +优 | +是 | +
8 | +<=30 | +中 | +否 | +中 | +否 | +
9 | +<=30 | +低 | +是 | +中 | +是 | +
10 | +>40 | +中 | +是 | +中 | +是 | +
11 | +<=30 | +中 | +是 | +优 | +是 | +
12 | +31-40 | +中 | +否 | +优 | +是 | +
13 | +31-40 | +高 | +是 | +中 | +是 | +
14 | +>40 | +中 | +否 | +优 | +否 | +
import pandas as pd
+from sklearn.model_selection import train_test_split
+
+data = pd.DataFrame({'年龄': ['<=30', '<=30', '31-40', '>40', '>40', '>40', '31-40', '<=30', '<=30', '>40', '<=30', '31-40', '31-40', '>40'],
+ '收入': ['高', '高', '高', '中', '低', '低', '低', '中', '低', '中', '中', '中', '高', '中'],
+ '是否为学生': ['否', '否', '否', '否', '是', '是', '是', '否', '是', '是', '是', '否', '是', '否'],
+ '信誉': ['中', '优', '中', '中', '中', '优', '优', '中', '中', '中', '优', '优', '中', '优'],
+ '购买计算机': ['否', '否', '是', '是', '是', '否', '是', '否', '是', '是', '是', '是', '是', '否']})
+
+X = data.drop('购买计算机', axis=1)
+y = data['购买计算机']
+
+X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.5, random_state=27)
+from sklearn.compose import ColumnTransformer
+from sklearn.preprocessing import OneHotEncoder, LabelEncoder
+
+# 对类别特征进行编码
+cat_features = ['年龄', '收入', '是否为学生', '信誉']
+ct = ColumnTransformer([('one_hot_encoder', OneHotEncoder(), cat_features)],
+ remainder='passthrough')
+
+X_train_encoded = ct.fit_transform(X_train)
+X_test_encoded = ct.transform(X_test)
+from sklearn.naive_bayes import GaussianNB
+
+gnb = GaussianNB()
+gnb.fit(X_train_encoded, y_train)
+from sklearn.metrics import accuracy_score
+
+y_pred = gnb.predict(X_test_encoded)
+print('预测结果:', y_pred)
+print('实际结果:', y_test.values)
+print('模型得分:', accuracy_score(y_test, y_pred))
+
预测结果: ['是' '否' '是' '是' '是' '是' '否'] +实际结果: ['否' '是' '否' '是' '是' '是' '否'] +模型得分: 0.5714285714285714 ++
+