From 4c63bec28cb02c75d331cdf07675e463c6b29afb Mon Sep 17 00:00:00 2001 From: yuanshi <1797230754@qq.com> Date: Thu, 8 Jun 2023 16:29:19 +0800 Subject: [PATCH] 6.7 --- src/FireDetect/Wind_Calc.py | 49 +++++ src/FireDetect/main.py | 349 ++++++++++++++++++++++++++++++++++++ 2 files changed, 398 insertions(+) create mode 100644 src/FireDetect/Wind_Calc.py create mode 100644 src/FireDetect/main.py diff --git a/src/FireDetect/Wind_Calc.py b/src/FireDetect/Wind_Calc.py new file mode 100644 index 0000000..642ddef --- /dev/null +++ b/src/FireDetect/Wind_Calc.py @@ -0,0 +1,49 @@ +import math +import time + +# 风速计数 +wind_count = 0 + +# 风速上次计数时间 +wind_last_time = 0 + +# 风速 +wind_speed = 0 + +# 风向角度 +wind_direction_angle = 0 + +# 风向字符串 +wind_direction_str = "" + +# 风向刻度表 +wind_directions = ["N", "NNE", "NE", "ENE", "E", "ESE", "SE", "SSE", + "S", "SSW", "SW", "WSW", "W", "WNW", "NW", "NNW", "N"] + +# 风速计数回调函数 +def wind_speed_callback(): + global wind_count + wind_count += 1 + +# 风向计数回调函数 +def wind_direction_callback(): + global wind_direction_angle + wind_direction_angle = int(input("请输入当前风向角度:")) + +try: + while True: + # 计算风速 + wind_time = time.time() - wind_last_time + if wind_time > 5: + wind_speed = wind_count / wind_time * 2.4 # 转化为mph + wind_count = 0 + wind_last_time = time.time() + + # 计算风向 + wind_direction = math.floor((wind_direction_angle + 11.25) / 22.5) + wind_direction_str = wind_directions[wind_direction % 16] + + print("风速:{:.1f} mph\t 风向:{}".format(wind_speed, wind_direction_str)) + time.sleep(0.1) +except KeyboardInterrupt: + pass diff --git a/src/FireDetect/main.py b/src/FireDetect/main.py new file mode 100644 index 0000000..3fa763b --- /dev/null +++ b/src/FireDetect/main.py @@ -0,0 +1,349 @@ +import math +import threading +import time +import contextlib + +import cv2 +import numpy as np +import torch +import torchvision +from models.common import DetectMultiBackend +from utils.plots import Annotator +import json +import base64 +import socket +from pathlib import Path +from utils.general import (LOGGER, Profile, check_file, check_imshow, check_requirements, colorstr, cv2, + increment_path, non_max_suppression, print_args, scale_boxes, strip_optimizer, xyxy2xywh) +import sys +import os +import nvidia_smi +from ctypes import windll +import math + +FILE = Path(__file__).resolve() +ROOT = FILE.parents[0] # YOLOv5 root directory +if str(ROOT) not in sys.path: + sys.path.append(str(ROOT)) # add ROOT to PATH +ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative + + +# 清空命令指示符输出 +def clear(): + _ = os.system('cls') + + +# 检查是否为管理员权限 +def is_admin(): + try: + return windll.shell32.IsUserAnAdmin() + except OSError as err: + print('OS error: {0}'.format(err)) + return False + + +# 简单检查gpu是否够格 +def check_gpu(): + nvidia_smi.nvmlInit() + gpu_handle = nvidia_smi.nvmlDeviceGetHandleByIndex(0) # 默认卡1 + gpu_name = nvidia_smi.nvmlDeviceGetName(gpu_handle) + memory_info = nvidia_smi.nvmlDeviceGetMemoryInfo(gpu_handle) + nvidia_smi.nvmlShutdown() + if b'RTX' in gpu_name: + return 2 + memory_total = memory_info.total / 1024 / 1024 + if memory_total > 3000: + return 1 + return 0 + + +def make_divisible(x, divisor): + # Returns nearest x divisible by divisor + if isinstance(divisor, torch.Tensor): + divisor = int(divisor.max()) # to int + return math.ceil(x / divisor) * divisor + + +def check_img_size(imgsz, s=32, floor=0): + # Verify image size is a multiple of stride s in each dimension + if isinstance(imgsz, int): # integer i.e. img_size=640 + new_size = max(make_divisible(imgsz, int(s)), floor) + else: # list i.e. img_size=[640, 480] + imgsz = list(imgsz) # convert to list if tuple + new_size = [max(make_divisible(x, int(s)), floor) for x in imgsz] + if new_size != imgsz: + LOGGER.warning(f'WARNING ⚠️ --img-size {imgsz} must be multiple of max stride {s}, updating to {new_size}') + return new_size + + +def clip_boxes(boxes, shape): + # Clip boxes (xyxy) to image shape (height, width) + if isinstance(boxes, torch.Tensor): # faster individually + boxes[:, 0].clamp_(0, shape[1]) # x1 + boxes[:, 1].clamp_(0, shape[0]) # y1 + boxes[:, 2].clamp_(0, shape[1]) # x2 + boxes[:, 3].clamp_(0, shape[0]) # y2 + else: # np.array (faster grouped) + boxes[:, [0, 2]] = boxes[:, [0, 2]].clip(0, shape[1]) # x1, x2 + boxes[:, [1, 3]] = boxes[:, [1, 3]].clip(0, shape[0]) # y1, y2 + + +def scale_boxes(img1_shape, boxes, img0_shape, ratio_pad=None): + # Rescale boxes (xyxy) from img1_shape to img0_shape + if ratio_pad is None: # calculate from img0_shape + gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1]) # gain = old / new + pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2 # wh padding + else: + gain = ratio_pad[0][0] + pad = ratio_pad[1] + + boxes[:, [0, 2]] -= pad[0] # x padding + boxes[:, [1, 3]] -= pad[1] # y padding + boxes[:, :4] /= gain + clip_boxes(boxes, img0_shape) + return boxes + + +def letterbox(im, new_shape=(640, 640), color=(114, 114, 114), auto=True, scaleFill=False, scaleup=True, stride=32): + # Resize and pad image while meeting stride-multiple constraints + shape = im.shape[:2] # current shape [height, width] + if isinstance(new_shape, int): + new_shape = (new_shape, new_shape) + + # Scale ratio (new / old) + r = min(new_shape[0] / shape[0], new_shape[1] / shape[1]) + if not scaleup: # only scale down, do not scale up (for better val mAP) + r = min(r, 1.0) + + # Compute padding + ratio = r, r # width, height ratios + new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r)) + dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding + if auto: # minimum rectangle + dw, dh = np.mod(dw, stride), np.mod(dh, stride) # wh padding + elif scaleFill: # stretch + dw, dh = 0.0, 0.0 + new_unpad = (new_shape[1], new_shape[0]) + ratio = new_shape[1] / shape[1], new_shape[0] / shape[0] # width, height ratios + + dw /= 2 # divide padding into 2 sides + dh /= 2 + + if shape[::-1] != new_unpad: # resize + im = cv2.resize(im, new_unpad, interpolation=cv2.INTER_LINEAR) + top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1)) + left, right = int(round(dw - 0.1)), int(round(dw + 0.1)) + im = cv2.copyMakeBorder(im, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) # add border + return im, ratio, (dw, dh) + + +def select_device(device='', batch_size=0, newline=True): + # device = None or 'cpu' or 0 or '0' or '0,1,2,3' + s = f'torch-{torch.__version__} ' + device = str(device).strip().lower().replace('cuda:', '').replace('none', '') # to string, 'cuda:0' to '0' + cpu = device == 'cpu' + mps = device == 'mps' # Apple Metal Performance Shaders (MPS) + if cpu or mps: + os.environ['CUDA_VISIBLE_DEVICES'] = '-1' # force torch.cuda.is_available() = False + elif device: # non-cpu device requested + os.environ['CUDA_VISIBLE_DEVICES'] = device # set environment variable - must be before assert is_available() + assert torch.cuda.is_available() and torch.cuda.device_count() >= len(device.replace(',', '')), \ + f"Invalid CUDA '--device {device}' requested, use '--device cpu' or pass valid CUDA device(s)" + + if not cpu and not mps and torch.cuda.is_available(): # prefer GPU if available + devices = device.split(',') if device else '0' # range(torch.cuda.device_count()) # i.e. 0,1,6,7 + n = len(devices) # device count + if n > 1 and batch_size > 0: # check batch_size is divisible by device_count + assert batch_size % n == 0, f'batch-size {batch_size} not multiple of GPU count {n}' + space = ' ' * (len(s) + 1) + for i, d in enumerate(devices): + p = torch.cuda.get_device_properties(i) + s += f"{'' if i == 0 else space}CUDA:{d} ({p.name}, {p.total_memory / (1 << 20):.0f}MiB)\n" # bytes to MB + arg = 'cuda:0' + elif mps and getattr(torch, 'has_mps', False) and torch.backends.mps.is_available(): # prefer MPS if available + s += 'MPS\n' + arg = 'mps' + else: # revert to CPU + s += 'CPU\n' + arg = 'cpu' + + if not newline: + s = s.rstrip() + LOGGER.info(s) + return torch.device(arg) + + +class YOLO: + def __init__(self, + path, + device, + imgsz, + conf=0.3, + iou=0.25, + classes=None, + max_det=50, + half=True, + dnn=False, + agnostic_nms=False): + self.half = half + self.device = torch.device('cuda:0') + self.conf = conf + self.iou_thres = iou + self.agnostic_nms = agnostic_nms + self.max_det = max_det + model = DetectMultiBackend(path, device=self.device, dnn=dnn) + model.eval() + self.stride, self.names, self.pt, self.jit, self.onnx = model.stride, model.names, model.pt, model.jit, model.onnx + imgsz = (imgsz, imgsz) if isinstance(imgsz, int) else imgsz + self.img_size = check_img_size(imgsz, s=self.stride) # check image size + if self.pt: + model.model.half() if half else model.model.float() + if half: + dtype = torch.float16 + else: + dtype = torch.float32 + model(torch.zeros(1, 3, *self.img_size).to(device).type(dtype)) # warmup + self.model = model + self.classes = classes + + @torch.no_grad() + def predict(self, im): + # Load model + src_shape = im.shape + model = self.model + # Half + half = self.half # half precision only supported by PyTorch on CUDA + device = self.device + + img = letterbox(im, self.img_size, stride=self.stride, auto=True)[0] + # Convert + img = img.transpose((2, 0, 1))[::-1] # HWC to CHW, BGR to RGB + img = np.ascontiguousarray(img) + + im = torch.from_numpy(img).to(device) + im = im.half() if half else im.float() # uint8 to fp16/32 + im /= 255 # 0 - 255 to 0.0 - 1.0 + if len(im.shape) == 3: + im = im[None] # expand for batch dim + # Inference + pred = model(im) + # NMS + pred = non_max_suppression(pred, self.conf, self.iou_thres, self.classes, self.agnostic_nms, + max_det=self.max_det) + # if not len(det): + # return [], [], [] + # det[:, :4] = scale_boxes(im.shape[2:], det[:, :4], im.shape).round() + for i, det in enumerate(pred): + # 画框 + annotator = Annotator(img, line_width=2) + if len(det): + target_list = [] + result = "fire" + # 将转换后的图片画框结果转换成原图上的结果 + det[:, :4] = scale_boxes(im.shape[2:], det[:, :4], img.shape).round() + for *xyxy, conf, cls in reversed(det): # 处理推理出来每个目标的信息 + # 将xyxy(左上角+右下角)格式转为xywh(中心点+宽长)格式,并除上w,h做归一化,转化为列表再保存 + xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4))).view(-1).tolist() # normalized xywh + # if names[int(cls)]=='': + # result = "fire" + # type = "Alarming" + annotator.box_label(xyxy, label=f'[{YOLO.names[int(cls)]} {conf:.2f}]', + color=(34, 139, 34), + txt_color=(0, 191, 255)) + target_list.append(xywh) + print('\033[0;31;40m' + f' 发现火情 ' + '\033[0m') + + im0 = annotator.result() + cv2.imshow('UAV', im0) + cv2.waitKey(1) + + return target_list, im0 + + +class PID: + def __init__(self, p, i, d, set_value): + self.kp = p + self.ki = i + self.kd = d + self.setValue = set_value # 目标值 + self.lastErr = 0 # 上一次误差 + self.preLastErr = 0 # 临时存误差 + self.errSum = 0 # 误差总和 + + # 位置式PID + def pidPosition(self, curValue): + err = self.setValue - curValue + dErr = err - self.lastErr + self.preLastErr = self.lastErr + self.lastErr = err + self.errSum += err + outPID = self.kp * err + (self.ki * self.errSum) + (self.kd * dErr) + return outPID + + +# #设置时延 +def delayMsecond(t): # t的单位0.1ms + start, end = 0, 0 + start = time.perf_counter() * pow(10, 7) + while (end - start < t * pow(10, 3)): + end = time.perf_counter() * pow(10, 7) + + +# 连接摄像头类 +class Capture: + def __init__(self, + ip="http://admin:admin@192.168.8.126:8081"): + self.ip = ip + self.cap = cv2.VideoCapture(self.ip) + + def read(self): + ret, img = self.cap.read() + return img + + +def my_cvtColo(img, code): + choice = ["COLOR_BGRA2BGR", "cv2.COLOR_BGR2GRAY", "COLOR_BGRA2RGB", "COLOR_BGRA2RGBA"] + img = cv2.cvtColor(img,choice[code]) + return img + +def main(): + # cap = cv2.VideoCapture("http://admin:admin@192.168.8.126:8081") + # print("图像加载成功") + # 模型路径 + path = 'fire.pt' + # 尺寸大小 + width, height = 640, 640 + ip = input("输入摄像头地址:") + cap = Capture(ip) + conf = float(input("输入置信度:")) + predict = YOLO(path, "cuda:0", imgsz=(width, height), conf=conf, classes=None) + + while True: + img = cap.read() + img = np.rot90(img, 0) + img = np.array(img) + img = my_cvtColo(img,1) + target, im0 = predict.predict(img) + img_b64 = base64.b64encode(im0).decode('utf-8') + print(img_b64) + data = { + "img": img_b64, + "type": "Alarming", + "fire_flag": 'fire' + } + + json_data = json.dumps(data).encode('utf-8') + cs.send(json_data) + delayMsecond(100) + + +if __name__ == "__main__": + IP = int(input("请输入服务器地址:")) + port = input("请输入服务器端口号:") + cs = socket.socket(socket.AF_INET, socket.SOCK_STREAM) + cs.connect((IP, port)) + print("服务器连接成功") + is_admin() + check_gpu() + main() + cs.close()