You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Go to file
p9n6cg2k8 c39e527d1a
Update README.md
4 years ago
README.md Update README.md 4 years ago

README.md

pattern_recognition

from future import division, print_function, absolute_import

Import MNIST dataMNIST数据集导入

from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets("MNIST_data", one_hot=False)

import tensorflow as tf import matplotlib.pyplot as plt import numpy as np

Training Parameters超参数

learning_rate = 0.001 #学习率 num_steps = 2000 # 训练步数 batch_size = 128 # 训练数据批的大小

Network Parameters网络参数

num_input = 784 # MNIST数据输入 (img shape: 28*28) num_classes = 10 # MNIST所有类别 (0-9 digits) dropout = 0.75 # Dropout, probability to keep units = (1-p),保留神经元相应的概率为(1-p)=(1-0.75)=0.25

Create the neural network创建深度神经网络

def conv_net(x_dict, n_classes, dropout, reuse, is_training):

# Define a scope for reusing the variables确定命名空间
with tf.variable_scope('ConvNet', reuse=reuse):
    # TF Estimator类型的输入为像素
    x = x_dict['images']

Import MNIST dataMNIST数据集导入

from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets("MNIST_data", one_hot=False)

import tensorflow as tf import matplotlib.pyplot as plt import numpy as np

Training Parameters超参数

learning_rate = 0.001 #学习率 num_steps = 2000 # 训练步数 batch_size = 128 # 训练数据批的大小

Network Parameters网络参数

num_input = 784 # MNIST数据输入 (img shape: 28*28) num_classes = 10 # MNIST所有类别 (0-9 digits) dropout = 0.75 # Dropout, probability to keep units = (1-p),保留神经元相应的概率为(1-p)=(1-0.75)=0.25

Create the neural network创建深度神经网络

def conv_net(x_dict, n_classes, dropout, reuse, is_training):

# Define a scope for reusing the variables确定命名空间
with tf.variable_scope('ConvNet', reuse=reuse):
    # TF Estimator类型的输入为像素
    x = x_dict['images']

    # MNIST数据输入格式为一位向量包含784个特征 (28*28像素)
    # 用reshape函数改变形状以匹配图像的尺寸 [高 x 宽 x 通道数]
    # 输入张量的尺度为四维: [(每一)批数据的数目, 高,宽,通道数]
    x = tf.reshape(x, shape=[-1, 28, 28, 1])


    # 卷积层32个卷积核尺寸为5x5
    conv1 = tf.layers.conv2d(x, 32, 5, activation=tf.nn.relu)
    # 最大池化层步长为2无需学习任何参量
    conv1 = tf.layers.max_pooling2d(conv1, 2, 2)

    # 卷积层64个卷积核尺寸为3x3
    conv2 = tf.layers.conv2d(conv1, 64, 3, activation=tf.nn.relu)
    # 最大池化层步长为2无需学习任何参量
    conv2 = tf.layers.max_pooling2d(conv2, 2, 2)

    # 展开特征为一维向量,以输入全连接层
    fc1 = tf.contrib.layers.flatten(conv2)

    # 全连接层
    fc1 = tf.layers.dense(fc1, 1024)
    # 应用Dropout (训练时打开,测试时关闭)
    fc1 = tf.layers.dropout(fc1, rate=dropout, training=is_training)

    # 输出层,预测类别
    out = tf.layers.dense(fc1, n_classes)

return out

确定模型功能 (参照TF Estimator模版)

def model_fn(features, labels, mode):

# 构建神经网络
# 因为dropout在训练与测试时的特性不一我们此处为训练和测试过程创建两个独立但共享权值的计算图
logits_train = conv_net(features, num_classes, dropout, reuse=False, is_training=True)
logits_test = conv_net(features, num_classes, dropout, reuse=True, is_training=False)

# 预测
pred_classes = tf.argmax(logits_test, axis=1)
pred_probas = tf.nn.softmax(logits_test)

if mode == tf.estimator.ModeKeys.PREDICT:
    return tf.estimator.EstimatorSpec(mode, predictions=pred_classes) 
    
# 确定误差函数与优化器
loss_op = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(
    logits=logits_train, labels=tf.cast(labels, dtype=tf.int32)))
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)
train_op = optimizer.minimize(loss_op, global_step=tf.train.get_global_step())

# 评估模型精确度
acc_op = tf.metrics.accuracy(labels=labels, predictions=pred_classes)

# TF Estimators需要返回EstimatorSpec
estim_specs = tf.estimator.EstimatorSpec(
  mode=mode,
  predictions=pred_classes,
  loss=loss_op,
  train_op=train_op,
  eval_metric_ops={'accuracy': acc_op})

return estim_specs

构建Estimator

model = tf.estimator.Estimator(model_fn)

确定训练输入函数

input_fn = tf.estimator.inputs.numpy_input_fn( x={'images': mnist.train.images}, y=mnist.train.labels, batch_size=batch_size, num_epochs=None, shuffle=True)

开始训练模型

model.train(input_fn, steps=num_steps)

评判模型

确定评判用输入函数

input_fn = tf.estimator.inputs.numpy_input_fn( x={'images': mnist.test.images}, y=mnist.test.labels, batch_size=batch_size, shuffle=False) model.evaluate(input_fn)

预测单个图像

n_images = 6

从数据集得到测试图像

test_images = mnist.test.images[:n_images]

准备输入数据

input_fn = tf.estimator.inputs.numpy_input_fn( x={'images': test_images}, shuffle=False)

用训练好的模型预测图片类别

preds = list(model.predict(input_fn))

可视化显示

for i in range(n_images): plt.imshow(np.reshape(test_images[i], [28, 28]), cmap='gray') plt.show() print("Model prediction:", preds[i])

从数据集得到测试图像

test_images = mnist.test.images[:n_images]

准备输入数据

input_fn = tf.estimator.inputs.numpy_input_fn( x={'images': test_images}, shuffle=False)

用训练好的模型预测图片类别

preds = list(model.predict(input_fn))

可视化显示

for i in range(n_images): plt.imshow(np.reshape(test_images[i], [28, 28]), cmap='gray') plt.show() print("Model prediction:", preds[i])

从数据集得到测试图像

test_images = mnist.test.images[:n_images]

准备输入数据

input_fn = tf.estimator.inputs.numpy_input_fn( x={'images': test_images}, shuffle=False)

用训练好的模型预测图片类别

preds = list(model.predict(input_fn))

可视化显示

for i in range(n_images): plt.imshow(np.reshape(test_images[i], [28, 28]), cmap='gray') plt.show() print("Model prediction:", preds[i])