You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
138 lines
4.5 KiB
138 lines
4.5 KiB
"""
|
|
test_visualization.py - 单元测试可视化模块的功能。
|
|
"""
|
|
import unittest
|
|
from unittest.mock import patch
|
|
import pandas as pd
|
|
from visualization import (
|
|
read_danmakus,
|
|
filter_relevant_danmakus,
|
|
preprocess_danmakus,
|
|
extract_words,
|
|
remove_stopwords,
|
|
calculate_word_frequency,
|
|
generate_wordcloud
|
|
)
|
|
|
|
class TestVisualization(unittest.TestCase):
|
|
"""
|
|
测试可视化模块的单元测试类。
|
|
"""
|
|
|
|
@patch('pandas.read_excel')
|
|
def test_read_danmakus(self, mock_read_excel):
|
|
"""
|
|
测试从 Excel 文件中读取弹幕内容的功能。
|
|
"""
|
|
# 模拟 Excel 数据
|
|
mock_data = pd.DataFrame({'弹幕内容': ['弹幕1', '弹幕2', '弹幕3']})
|
|
mock_read_excel.return_value = mock_data
|
|
|
|
# 调用读取函数
|
|
result = read_danmakus("dummy_filename.xlsx")
|
|
# 期望返回弹幕内容列表
|
|
self.assertEqual(result, ['弹幕1', '弹幕2', '弹幕3'])
|
|
|
|
def test_filter_relevant_danmakus(self):
|
|
"""
|
|
测试筛选与给定关键词相关的弹幕内容。
|
|
"""
|
|
danmakus = ['这是AI技术的未来', '普通弹幕', '智能应用']
|
|
keywords = ['AI技术', '智能']
|
|
|
|
# 调用筛选函数
|
|
result = filter_relevant_danmakus(danmakus, keywords)
|
|
# 期望返回包含关键词的弹幕
|
|
self.assertEqual(result, ['这是AI技术的未来', '智能应用'])
|
|
|
|
def test_filter_relevant_danmakus_no_match(self):
|
|
"""
|
|
测试没有匹配关键词时的筛选结果。
|
|
"""
|
|
danmakus = ['普通弹幕1', '普通弹幕2']
|
|
keywords = ['AI技术', '智能']
|
|
|
|
# 调用筛选函数
|
|
result = filter_relevant_danmakus(danmakus, keywords)
|
|
# 期望返回空列表
|
|
self.assertEqual(result, [])
|
|
|
|
def test_preprocess_danmakus(self):
|
|
"""
|
|
测试预处理弹幕内容,去除特殊字符和多余空格。
|
|
"""
|
|
danmakus = ['这是一个测试!', '普通 弹幕 ']
|
|
|
|
# 调用预处理函数
|
|
result = preprocess_danmakus(danmakus)
|
|
# 期望返回处理后的弹幕
|
|
self.assertEqual(result, ['这是一个测试', '普通 弹幕'])
|
|
|
|
def test_extract_words(self):
|
|
"""
|
|
测试使用 Jieba 分词库对弹幕内容进行分词。
|
|
"""
|
|
danmakus = ['这是一个测试']
|
|
|
|
# 调用分词函数
|
|
result = extract_words(danmakus)
|
|
# 期望返回分词结果
|
|
self.assertIn('这是', result)
|
|
self.assertIn('一个', result)
|
|
self.assertIn('测试', result)
|
|
|
|
def test_remove_stopwords(self):
|
|
"""
|
|
测试去除停用词和单个字符。
|
|
"""
|
|
words = ['的', '是', '测试', 'AI', '智能']
|
|
stopwords = set(['的', '是'])
|
|
|
|
# 调用去除停用词函数
|
|
result = remove_stopwords(words, stopwords)
|
|
# 期望返回去除停用词后的词语列表
|
|
self.assertEqual(result, ['测试', 'AI', '智能'])
|
|
|
|
def test_calculate_word_frequency(self):
|
|
"""
|
|
测试计算词语的频率。
|
|
"""
|
|
words = ['测试', 'AI', '测试']
|
|
|
|
# 调用计算词频函数
|
|
result = calculate_word_frequency(words)
|
|
# 期望返回正确的频率计数器
|
|
self.assertEqual(result['测试'], 2)
|
|
self.assertEqual(result['AI'], 1)
|
|
|
|
@patch('visualization.WordCloud')
|
|
@patch('visualization.plt')
|
|
def test_generate_wordcloud(self, mock_plt, mock_wordcloud):
|
|
"""
|
|
测试生成词云图并将其保存为 PNG 文件的功能。
|
|
"""
|
|
word_freq = {'测试': 10, 'AI': 5}
|
|
|
|
# 调用生成词云函数
|
|
generate_wordcloud(word_freq)
|
|
|
|
# 确保 WordCloud 的生成函数被调用
|
|
mock_wordcloud.assert_called_once()
|
|
# 确保 plt 的 savefig 被调用
|
|
mock_plt.savefig.assert_called_once_with("wordcloud.png", bbox_inches='tight', dpi=300)
|
|
|
|
def test_generate_wordcloud_no_words(self):
|
|
"""
|
|
测试生成词云图时没有词语的情况。
|
|
"""
|
|
word_freq = {}
|
|
|
|
# 调用生成词云函数
|
|
try:
|
|
generate_wordcloud(word_freq)
|
|
except ValueError as error:
|
|
self.fail(f"generate_wordcloud raised ValueError unexpectedly: {error}")
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main() # 执行测试
|