You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

39 lines
1.1 KiB

3 years ago
from os import path
import cv2
import numpy as np
from loguru import logger
from numpy import average, dot, linalg
base_path = path.join(path.split(__file__)[0], 'models')
def similarity(img_1, img_2):
images = [img_1, img_2]
vectors = []
norms = []
for image in images:
vector = [average(pixels) for pixels in image]
vectors.append(vector)
norms.append(linalg.norm(vector, 2))
a, b = vectors
a_norm, b_norm = norms
return dot(a / a_norm, b / b_norm)
def recognize(img_content: bytes):
img = cv2.imdecode(np.asarray(bytearray(img_content), dtype=np.uint8), cv2.IMREAD_COLOR)
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
img = cv2.threshold(img, 200, 255, cv2.THRESH_BINARY)[1]
models = [cv2.imread(path.join(base_path, f'{i}.png')) for i in range(10)]
code = ''
for i in range(4):
code += sorted(
[(f'{j}', similarity(img[4:24, 9 + i * 15:24 + i * 15], std)) for j, std in enumerate(models)],
key=lambda x: x[1]
)[-1][0]
logger.info(f'识别结果:{code}')
if len(code) != 4:
logger.warning('验证码长度不是 4 位')
return code