|
|
|
import sys
|
|
|
|
import cv2
|
|
|
|
import numpy as np
|
|
|
|
from os import path
|
|
|
|
from loguru import logger
|
|
|
|
from numpy import average, dot, linalg
|
|
|
|
|
|
|
|
base_path = path.join(path.split(__file__)[0], 'models')
|
|
|
|
|
|
|
|
|
|
|
|
def similarity(img_1, img_2):
|
|
|
|
try:
|
|
|
|
images = [img_1, img_2]
|
|
|
|
vectors = []
|
|
|
|
norms = []
|
|
|
|
for image in images:
|
|
|
|
vector = [average(pixels) for pixels in image]
|
|
|
|
vectors.append(vector)
|
|
|
|
norms.append(linalg.norm(vector, 2))
|
|
|
|
a, b = vectors
|
|
|
|
a_norm, b_norm = norms
|
|
|
|
return dot(a / a_norm, b / b_norm)
|
|
|
|
except Exception:
|
|
|
|
exceptionInformation = sys.exc_info()
|
|
|
|
logger.warning(f'[验证码识别] | 运算出错:{exceptionInformation}')
|
|
|
|
|
|
|
|
|
|
|
|
def recognize(img_content: bytes):
|
|
|
|
try:
|
|
|
|
img = cv2.imdecode(np.asarray(bytearray(img_content), dtype=np.uint8), cv2.IMREAD_COLOR)
|
|
|
|
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
|
|
|
img = cv2.threshold(img, 200, 255, cv2.THRESH_BINARY)[1]
|
|
|
|
models = [cv2.imread(path.join(base_path, f'{i}.png')) for i in range(10)]
|
|
|
|
code = ''
|
|
|
|
for i in range(4):
|
|
|
|
code += sorted(
|
|
|
|
[(f'{j}', similarity(img[4:24, 9 + i * 15:24 + i * 15], std)) for j, std in enumerate(models)],
|
|
|
|
key=lambda x: x[1], reverse=True
|
|
|
|
)[0][0]
|
|
|
|
logger.info(f'[验证码识别] | 识别结果:{code}')
|
|
|
|
return code
|
|
|
|
except Exception:
|
|
|
|
exceptionInformation = sys.exc_info()
|
|
|
|
logger.warning(f'[验证码识别] | 识别出错:{exceptionInformation}')
|