You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

45 lines
1.5 KiB

import sys
import cv2
import numpy as np
from os import path
from loguru import logger
from numpy import average, dot, linalg
base_path = path.join(path.split(__file__)[0], 'models')
def similarity(img_1, img_2):
try:
images = [img_1, img_2]
vectors = []
norms = []
for image in images:
vector = [average(pixels) for pixels in image]
vectors.append(vector)
norms.append(linalg.norm(vector, 2))
a, b = vectors
a_norm, b_norm = norms
return dot(a / a_norm, b / b_norm)
except Exception:
exceptionInformation = sys.exc_info()
logger.warning(f'[验证码识别] | 运算出错:{exceptionInformation}')
def recognize(img_content: bytes):
try:
img = cv2.imdecode(np.asarray(bytearray(img_content), dtype=np.uint8), cv2.IMREAD_COLOR)
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
img = cv2.threshold(img, 200, 255, cv2.THRESH_BINARY)[1]
models = [cv2.imread(path.join(base_path, f'{i}.png')) for i in range(10)]
code = ''
for i in range(4):
code += sorted(
[(f'{j}', similarity(img[4:24, 9 + i * 15:24 + i * 15], std)) for j, std in enumerate(models)],
key=lambda x: x[1], reverse=True
)[0][0]
logger.info(f'[验证码识别] | 识别结果:{code}')
return code
except Exception:
exceptionInformation = sys.exc_info()
logger.warning(f'[验证码识别] | 识别出错:{exceptionInformation}')