sonar

Driving_Reminder_Assistant
unspecified

java:Sonar way
2021-06-26

sona r Driving_Reminder_Assistant

Sonar Report

H=x

1. Driving_Reminder_Assistant
1.1. #hAR
1.2. [T
1.3. [ARAFE
14 RERE

Page 1

112

sona r Driving_Reminder_Assistant Sonar Report

1. Driving_Reminder_Assistant

ISR TIBERIE | BT SIEREBXNEEEATET. IRFTEHRNEFANES | B
SERuhH—S &I,

IREAYIE S9Driving_Reminder_Assistant , 4 pATE)92021-06-26 , {FRIEREEE N
java:Sonar way , it 3814%&#IA1.,

1.1. 5k
“mAL|a)RR
Bug ARSI
34 4h34min
= SREETHE
118 1d1h25min
HIKIE BAES
2738 10d17h52min
2890 FHSaEE 5890
Bk B ;
AR 0
1=H[a)RR 0
REEHIEE ,
SRR ,
EMRLE 0
1B, -
P 94
= 463
RE 2212
22 108
BESOT
IMBE

son a r Driving_Reminder_Assistant Sonar Report
13175 1780 17005
VR 13k 1046
3 122
X4 69
Bx N/A
BEE1T(%) 17.6
S
2256 X4 32.7
SxE
(%)
10.7 T 1576
ERE(%)
1.2. [al@SHr
BEREZEFHINTOP10
Local variable and method 710

parameter names should comply
with a naming convention

Method names should comply with 348
a haming convention

Redundant casts should not be used |214

Field names should comply witha {194
naming convention

Sections of code should not be 176
commented out

"@Deprecated" code should not be |140
used

Track uses of "TODO" tags 108

Modifiers should be declared in the [96
correct order

Private fields only used as local 63
variables in methods should become
local variables

Multiple variables should not be 59
declared on the same line

sonar

Driving_Reminder_Assistant

Sonar

Repor t

Eﬁﬂﬁagﬁ’ggﬁtm%

BridgeService.java 527
NativeCaller.java 321
PlayActivity.java 239
SettingSDCardActivity.java 211
AlermBean.java 204

SZXE BB TOPS

PlayActivity.java 422
BridgeService.java 181
AddCameraActivity.java 129
AlermBean.java 119
PlayCommonManager.java 106
BETEZH TOP5

SCameraSetSDTiming.java 629
SCameraSetPlanVideoTiming.java 628
SCameraSetPushVideoTiming.java [624
AddCameraActivity.java 240
PlayActivity.java 162

1.3. [A&iFE

AL

convention

Local variable and method parameter names should comply with a naming

sonar

Driving_Reminder_Assistant Sonar Report

AR Shared naming conventions allow teams to collaborate effectively.
This rule raises an issue when a local variable or function
parameter name does _
not match the provided regular expression.

Noncompliant Code Example

With the default regular expression *[a-z][a-zA-Z0-9]*$:

ublic void doSomething(int my_param) {

pint LOCAL; J y-P

-

Compliant Solution

public void doSomething(int myParam) {

int local;

-

Exceptions) _

Loop counters are ignored by this rule.

f(}; (inti_1 =0;i_1 < limit; i_1++) { // Compliant

-

as well as one-character catch variables:

7.

% catch (Exception e) { // Compliant

AR BT
SettingAlarmActivity.java 346, 346, 347, 347,

347, 348, 349, 350,
350, 350, 351, 351,
351, 352, 352, 352,
353, 353, 353, 354,
354, 354, 355, 355,
355, 356, 356, 356, 357

sona r Driving_Reminder_Assistant

Sonar Report

SettingSDCardActivity.java

474, 475, 475, 475,
476, 476,477,477,
478, 478, 479, 479,
480, 480, 481, 481,
482, 482, 483, 483,
484, 484, 485, 485,
486, 486, 487, 749,
749, 749, 750, 750,
750, 751, 751, 751,
752,752, 752, 753,
753, 753, 754, 754,
754, 755, 755, 755,
756, 790, 790, 791,
791, 792, 792, 793,
793, 794, 794, 795,
795, 796, 796, 797,
797, 798, 798, 799,
799, 800, 800, 949,
950, 950, 950, 951,
951, 952, 953, 953,
953, 954, 954, 954,
955, 955, 955, 956,
956, 956, 957, 957,
957, 958, 958, 958,
959, 959, 959, 960,
960, 960, 961, 961,
961, 962, 962, 962,
963, 963, 963, 964,
964, 964, 965, 965,
965, 966, 966, 966, 967

AlermBean.java

98, 106, 114, 122, 130,
142, 146, 194, 202,
210, 218, 226, 234,
242, 250, 258, 266,
274,282, 290, 298,
306, 314, 322, 330,
338, 346, 354, 362,
370, 377, 383, 389,
395, 401, 407, 413,
419, 425, 431, 437,
443, 449, 455, 461,
467, 473, 479, 485,
491, 497

SdcardBean.java

16, 48, 62, 68, 74, 80,
86, 104, 110, 116, 122,
128, 134, 140, 146,
152, 158, 164, 170,
176, 182, 188, 194,
200, 206, 212, 218, 224

SensorTimeUtil.java

17,17, 203, 204

sonar

Driving_Reminder_Assistant

Sonar Report

NativeCaller.java

12, 13, 13, 13, 14, 14,
15, 16, 16, 16, 17, 17,
17, 18, 18, 18, 19, 19,
19, 20, 20, 20, 21, 21
21, 22, 22, 22, 23, 23,
23, 24, 24, 24, 25, 25,
25, 26, 26, 26, 27, 27,
27, 28, 28, 28, 29, 29,
29, 30, 30, 69, 79, 130,
130, 135, 135, 135,
136, 136, 146, 146,
149, 150, 150, 156,
158, 160, 161, 161,
161, 162, 162, 163,
163, 164, 179, 179,
179, 179, 180, 180,
181, 181, 182, 182,
183, 183, 184, 184,
185, 185, 186, 186,
187, 187, 188, 188,
189, 189, 190, 190,
190, 193, 193, 193,
193, 194, 194, 227,
227, 228, 228, 229,
229, 315, 315, 315, 329

sonar

Driving_Reminder_Assistant

Sonar Report

BridgeService.java

245, 254, 256, 258,
260, 262, 264, 266,
268, 270, 272, 274,
276, 278, 280, 282,
284, 286, 288, 290,
292, 294, 296, 316,
318, 320, 322, 324,
326, 328, 330, 332,
334, 336, 338, 340,
342, 344, 346, 348,
350, 352, 354, 356,
358, 381, 383, 385,
387, 389, 391, 393,
395, 397, 399, 401,
403, 405, 407, 409,
411, 413, 415, 417,
419, 421, 423, 515,
515, 515, 515, 516,
540, 541, 550, 550,
550, 566, 566, 619,
620, 620, 620, 621,
621, 622, 622, 623,
636, 637, 637, 637,
638, 638, 639, 640,
640, 640, 641, 641,
641, 642, 642, 642,
643, 643, 643, 644,
644, 644, 645, 645,
645, 646, 646, 646,
647, 647, 647, 648,
648, 648, 649, 649,
649, 650, 650, 650,
651, 651, 651, 652,
652, 652, 653, 653,
653, 654, 654, 738,
750, 751, 751, 751,
752, 752, 753, 753,
754, 754, 755, 755,
756, 756, 757, 757,
758, 758, 759, 759,
760, 760, 761, 761,
762, 762, 763, 763,
893, 893, 893, 893,
894, 910, 910, 910,
911, 911, 911, 912,
912, 912, 913, 913,
914, 914, 915, 915,
916, 916, 917, 917,
918, 918, 919, 930,
930, 931, 931, 932,
932, 933, 933, 934,
934, 935, 935, 936,
936, 937, 937, 938,
938, 939, 939, 940,
940, 953, 953, 954,
954, 955, 955, 956,

sonar

Driving_Reminder_Assistant

Sonar Report

956, 957, 957, 958,
958, 959, 959, 960,
960, 961, 961, 962,
962, 963, 963, 993,
994, 994, 994, 995,
996, 997, 997, 997,
998, 998, 998, 999,
999, 999, 1000, 1000,
1000, 1001, 1001,
1001, 1002, 1002,
1002, 1003, 1003,
1003, 1004, 1004,
1022, 1023, 1023,
1023, 1024, 1024,
1026, 1026, 1026,
1027, 1027, 1027,
1028, 1028, 1028,
1029, 1029, 1029,
1030, 1030, 1030,
1031, 1031, 1031,
1032, 1032, 1032,
1033, 1033, 1033,
1034, 1034, 1034,
1035, 1035, 1035,
1036, 1036, 1036,
1037, 1037, 1037,
1038, 1038, 1038,
1039, 1039, 1039,
1040, 1040, 1051,
1051, 1077, 1078,
1090, 1091, 1091,
1091, 1092, 1092,
1093, 1093, 1094,
1094, 1095, 1095,
1096, 1096, 1097,
1097, 1098, 1098,
1099, 1099, 1100,
1100, 1101, 1101,
1102, 1102, 1103

PlayActivity.java

787, 1854, 1855, 1908,
1909

SwitchBean.java

14, 33, 39, 45

|f)|'|.,mu |Method names should comply with a naming convention

sonar

Driving_Reminder_Assistant Sonar Report

FNFEIA Shared naming conventions allow teams to collaborate efficiently.
This rule checks that all method names match a provided regular
expression.

Noncompliant Code Example

With default provided regular expression “[a-z][a-zA-Z0-9]*$:
public int DoSomething(){...}

Compliant Solution

public int doSomething(){...}

Exceptions

Overriding methods are excluded.

@Override

public int Do_Something(){...}

SHEFR ERAT

AddCameraActivity.java 280

PlayCommonManager.java 598, 608

ShowLocPicGridViewAdapter.java 133

AlermBean.java

94, 98, 102, 106, 110,
114, 118, 122, 126,
130, 134, 138, 142,
146, 190, 194, 198,
202, 206, 210, 214,
218, 222, 226, 230,
234, 238, 242, 246,
250, 254, 258, 262,
266, 270, 274, 278,
282, 286, 290, 294,
298, 302, 306, 310,
314, 318, 322, 326,
330, 334, 338, 342,
346, 350, 354, 358,
362, 366, 370, 374,
377, 380, 383, 386,
389, 392, 395, 398,
401, 404, 407, 410,
413, 416, 419, 422,
425, 428, 431, 434,
437, 440, 443, 446,
449, 452, 455, 458,
461, 464, 467, 470,
473,476, 479, 482,
485, 488, 491, 494, 497

sona r Driving_Reminder_Assistant

Sonar Report

SdcardBean.java

13, 16, 45, 48, 59, 62,
65, 68, 71, 74, 77, 80,
83, 86, 101, 104, 107,
110, 113, 116, 119,
122, 125, 128, 131,
134, 137, 140, 143,
146, 149, 152, 155,
158, 161, 164, 167,
170, 173, 176, 179,
182, 185, 188, 191,
194, 197, 200, 203,
206, 209, 212, 215,

218, 221, 224
AudioPlayer.java 26, 38
CustomAudioRecorder.java 19, 27,43
CustomBuffer.java 17,26
EncryptionUtils.java 31
SensorDoorData.java 19,58,91,110
SensorTimeUtil.java 17

NativeCaller.java

12, 32, 34, 36, 38, 41,
43, 45, 47, 49, 53, 57,
59, 61, 63, 65, 68, 71
73,76, 79, 81, 83, 85,
87, 89, 91, 92, 94, 96,
98, 100, 102, 110, 112,
114, 119, 121, 123,
124, 125, 126, 129,
132, 138, 142, 145,
148, 152, 156, 160,
178, 192, 196, 199,
202, 205, 207, 220,
223, 227, 228, 229,
234, 236, 238, 240,
242, 250, 256, 258,
263, 268, 270, 272,
274, 276, 282, 288,
290, 297, 300, 303,
305, 307, 309, 313,
315, 329, 342, 352,
360, 365

10

sonar

Driving_Reminder_Assistant

Sonar Report

BridgeService.java

75, 88, 107, 138, 152,
173, 195, 245, 493,
503, 508, 512, 526,
540, 549, 555, 565,
583, 590, 598, 604,
619, 627, 636, 696,
725, 736, 750, 801,
828, 832, 838, 852,
854, 859, 869, 880,
909, 929, 952, 1012,
1017, 1022, 1169,
1180, 1194, 1198,
1284, 1336, 1341,
1348, 1353, 1357,
1361, 1374, 1384,
1388, 1403, 1422,
1443, 1447

PlayActivity.java

1725, 1734, 1743,
1752, 2168, 2733

SettingUserActivity.java

213, 222

SearchListAdapter.java

93,111,134

SwitchBean.java

11, 14, 30, 33, 36, 39,
42, 45

EAd

|Redundant casts should not be used

11

sonar

Driving_Reminder_Assistant Sonar Report

FNFEIA Unnecessary casting expressions make the code harder to read
and understand.
Noncompliant Code Example
public void example() {
for (Foo obyj : (List< Foo>)|_getFoos()) { // Noncompliant; cast
un?/ecessary because List<Foo> is what's returned
}
}
public List<Foo> getFoos() {
} return this.foos;
Compliant Solution
public void example() {
for (Foo obj : getFoos()) {
/...
}
}
public List<Foo> getFoos() {
} return this.foos;
Exceptions
Casting may be required to distinguish the method to call in the
case of overloading:
class A {}
class B extends A{}
class C {
void fun(A a){}
void fun(B b){}
void foo() {
B b = new B();
fun(b);
fun((A) b); //call the first method so cast is not redundant.
}
B FR EAT
AddCameraActivity.java 385, 430, 431, 432,
433, 434, 436, 438,
439, 440, 442, 528, 834
MessageActivity.java 82, 83, 84,94
PlayCommonManager.java 138, 139
SCameraSetPlanVideoTiming.java 97, 98, 99, 100, 101,
102, 103, 104, 105,
106, 107, 108, 109,
110,111,112, 113, 329

12

sonar

Driving_Reminder_Assistant

Sonar Report

SCameraSetPushVideoTiming.java

90, 91, 92, 93, 94, 95,
96, 97, 98, 99, 100,
101, 102, 103, 104,
105, 106, 320

SCameraSetSDTiming.java

92, 93, 94, 95, 96, 97,
98, 99, 100, 101, 102,
103, 104, 105, 106,
107, 108, 325

SensorStartCodeActivity.java

79, 81, 82, 84, 85, 88,
89, 92

SettingAlarmActivity.java

267, 269, 271, 275,
276, 278, 411, 413,
414, 415, 416, 417,
418, 419, 420, 421

SettingSDCardActivity.java

211, 212, 213, 214,
215, 216, 217, 218,
219, 221, 228, 229,
230, 231, 233, 234

BindSensorListAdapter.java

55, 56, 58, 59, 65

MessageAdapter.java

57,58

PushVideoTimingAdapter.java

55, 56

ShowLocPicGridViewAdapter.java

58, 59, 61, 63, 65

PlayActivity.java

799, 803, 804, 806,
808, 811, 817, 819,
820, 821, 822, 823,
824, 825, 826, 827,
829, 830, 1336, 1375,
1376, 1394, 1399,
1400, 1401, 1402,
1403, 1404, 1405,
1406, 1407, 1408,
1409, 1410, 1411,
1412, 1413, 1414,
1415, 1416, 1417,
1418, 1419, 1420,
1421, 1422, 1423,
1424, 1425, 1426,
1427, 1428, 1429,
1430, 1837, 1839,
1863, 1865, 1867,
1869, 1871, 1873, 1971

SettingActivity.java 49, 50, 51, 52
SettingUserActivity.java 151, 152, 153, 154,
155, 157, 158
MoveVideoTimingAdapter.java 55, 56
SearchListAdapter.java 64, 65
SensorListAdapter.java 64, 66, 68, 70
VideoTimingAdapter.java 53, 54
WifiScanListAdapter.java 50, 51, 53

13

Driving_Reminder_Assistant

sonar

Sonar Report

#M __ |Field names should comply with a naming convention
AR R Sharing some naming conventions is a key point to make it

possible for a team to efficiently collaborate. This rule allows to

check that field

names match a provided regular expression.

Noncompliant Code Example

With the default regular expression *[a-z][a-zA-Z0-9]*$:

class MyClass {

private int my_field;

Compliant Solution

class MyClass {

} private int myField;
AHFTR BT
PlayActivity.java 942
SettingUserActivity.java 35
AddCameraActivity.java 56, 60, 73, 74, 75, 613
MessageActivity.java 38, 38
PlayCommonManager.java 64

SCameraSetPlanVideoTiming.java

45, 46, 46, 47, 47, 48,
48, 48, 48, 48, 48, 48,
49, 49, 49, 56, 57

SCameraSetPushVideoTiming.java

39, 40, 40, 41, 41, 42,
42,42, 42,42, 42, 42,
43, 43, 43, 50, 51

SCameraSetSDTiming.java

40, 41, 41, 42, 42, 43,
43, 43, 43, 43, 43, 43,
44,44, 44,51, 52

SensorStartCodeActivity.java

31, 31, 33, 34, 35, 36,
37

SettingAlarmActivity.java 50, 51, 52
SettingSDCardActivity.java 62, 68, 69, 70, 71, 72,
73,74,81, 87
PushVideoTimingAdapter.java 81, 82
ShowLocPicGridViewAdapter.java 281, 283

AlermBean.java

8, 13, 15, 16, 17, 18,
19, 25, 26, 27, 28, 29,
30, 31, 32, 33, 34, 35,
36, 37, 38, 40, 41, 42,
43, 44, 45, 46, 47, 48,
50, 51, 52, 53, 54, 55,
56, 57, 58, 59, 60, 61,
62, 63, 64, 65, 66, 67,
68, 69, 70

14

sonar

Driving_Reminder_Assistant

Sonar Report

SdcardBean.java 8,9, 10,11, 12, 19, 22,
23, 24, 25, 26, 27, 28,
29, 30, 31, 32, 33, 34,
35, 36, 37, 38, 39, 40,
41,42, 43
AudioPlayer.java 15
CustomAudioRecorder.java 14, 15, 16
CustomBuffer.java 8
BridgeService.java 21
PlayActivity.java 278, 279, 280, 292,
302, 302, 310
SettingActivity.java 23, 23, 23, 24
SettingUserActivity.java 36, 37, 38, 39
MoveVideoTimingAdapter.java 81, 82
VideoTimingAdapter.java 78,79
SwitchBean.java 7,8,9, 10

Fm |Sections of code should not be commented out

FNHEA Programmers should not comment out code as it bloats programs
and reduces readability.
Unused code should be deleted and can be retrieved from source
control history if required.
See
MISRA C:2004, 2.4 - Sections of code should not be
"commented out".
MISRA C++:2008, 2-7-2 - Sections of code shall not be
"commented out" using C-style comments.
MISRA C++:2008, 2-7-3 - Sections of code should not be
"commented out" using C++ comments.
MISRA C:2012, Dir. 4.4 - Sections of code should not be
"commented out"
AR FR BT
AddCameraActivity.java 435
MessageActivity.java 107, 144

PlayCommonManager.java

118, 204, 207, 210,
222, 273, 290, 308,
312, 330, 349, 351,
356, 385, 556, 681

SCameraSetPlanVideoTiming.java

196, 434, 437, 455,
464, 469, 506, 508,
520, 532, 538, 545,
562, 564, 566, 573, 630

SCameraSetPushVideoTiming.java

426, 444, 453, 458,
486, 491, 497, 499,
511, 523, 529, 536,
553, 555, 557, 564,
621, 656

15

Driving_Reminder_Assistant

sonar

Sonar Report

SCameraSetSDTiming.java

191, 193, 430, 433,
451, 460, 465, 502,
504, 516, 528, 534,
541, 558, 560, 562,

569, 626
SensorStartCodeActivity.java 116
SettingAlarmActivity.java 47
SettingSDCardActivity.java 65, 136, 147, 149, 183,

447,929, 939
StartActivity.java 48
BindSensorListAdapter.java 173
MessageAdapter.java 56

ShowLocPicGridViewAdapter.java

124,199, 201, 203,
212, 214, 217, 234,
242, 247, 249, 260,
264, 266, 272, 274, 277

TensorFlowObjectDetectionAPIModel.java 45, 89
BaseCallback.java 9,22, 29
AudioPlayer.java 10, 61,108, 110
CustomAudioRecorder.java 67
MyRender.java 164, 176, 268
MyStringUtils.java 31,48

SensorDoorData.java

21, 25, 28, 37, 43

SensorTimeUtil.java

13, 43, 54, 58, 74, 85,
99, 182, 192, 224, 227

Tools.java

52, 64, 97, 146, 150,
153

VideoFramePool.java

17

NativeCaller.java

117,176, 213, 215

BridgeService.java

42,108, 475, 481, 703,
708, 712, 788, 791, 807

PlayActivity.java

573, 624, 631, 670,
1013, 1631, 1720,

2067, 2703
SettingUserActivity.java 106, 183, 188
SearchListAdapter.java 70
SensorListAdapter.java 87,93, 99
VideoTimingAdapter.java 73
WifiScanListAdapter.java 49,120
VcmApi.java 25, 28, 34
|f)|'|.,mu |"@Deprecated" code should not be used

16

sonar

Driving_Reminder_Assistant Sonar Report

A Once deprecated, classes, and interfaces, and their members
should be avoided, rather than used, inherited or extended.
Deprecation is a warning)
that the class or interface has been superseded, and will eventuall
be removed. The deprecation period allows you to make a smoot
transition away
from the aging, soon-to-be-retired technology.
Noncompliant Code Example
:/@deprecated As of release 1.3, replaced by {@link #Fee}
@Deprecated
public class Fum { ... }
pu*tilic class Foo {
* @deprecated As of release 1.7, replaced by {@link
#c’lroThe hingBetter()}
@Deprecated .
public void doTheThing() { ... }
} public void doTheThingBetter() { ... }
public class Bar extends Foo { _ .
public void doTheThing() { ... } // Noncompliant; don't override a
fleprecated method or explicitly mark it as @Deprecated
public class Bar extends Fum { // Noncompliant; Fum is
deprecated
public void myMethod() {
Foo foo = new Foo(); // okay; the class isn't deprecated
foo.doTheThing(); // Noncompliant; doTheThing method is
d;aprecated
}
See
MITRE, CWE-477 - Use of Obsolete Functions
CERT, MET02-J. - Do not use deprecated or obsolete classes or
methods
HRFR ERAT
AddCameraActivity.java 63, 244, 245
PlayCommonManager.java 143, 147, 148, 642,
643, 655, 656
SCameraSetPlanVideoTiming.java 122, 123, 148, 149,
190, 191, 194, 195,
333, 337, 346, 350,
360, 363, 373, 376,
386, 389, 399, 402,
412, 415, 441, 442,
444, 445, 449, 450

17

Driving_Reminder_Assistant

sonar

Sonar Report

SCameraSetPushVideoTiming.java

115, 116, 141, 142,
183, 184, 187, 188,
324, 328, 337, 341,
351, 354, 364, 367,
377, 380, 390, 393,
403, 406, 430, 431,
433, 434, 438, 439

SCameraSetSDTiming.java

117, 118, 143, 144,
185, 186, 189, 190,
329, 333, 342, 346,
356, 359, 369, 372,
382, 385, 395, 398,
408, 411, 437, 438,
440, 441, 445, 446

SettingAlarmActivity.java

54,101, 112, 113, 282

SettingSDCardActivity.java

66, 158, 159, 224, 227

ViewPagerAdapter.java 19, 25, 37, 62
AudioPlayer.java 76
CustomAudioRecorder.java 93, 94
Tools.java 127,132

PlayActivity.java

277,394, 397, 400,
403, 447, 448, 693,
706, 756, 760, 846,
850, 1146, 1150, 1157,
1161, 1435, 1854,
1907, 1908, 1968

SettingUserActivity.java

53, 116, 117, 160, 163

S| |Track uses of "TODQ" tags
MR TODO tags are commonly used to mark places where some
more code Is required, but which the developer wants to
implement later.
Sometimes the developer will not have the time or will simply
forget to get back to that taﬁ.
This rule is meant to track those tags and to ensure that they do
not go unnoticed.
Noncompliant Code Example
void doSomething() {
// TODO
}
See
MITRE, CWE-546 - Suspicious Comment
AR FR ERAT
AddCameraActivity.java 115, 263, 269, 275,
494, 798, 805, 817,
822, 827

18

sona r Driving_Reminder_Assistant

Sonar Report

MyListView.java

12

SCameraSetPlanVideoTiming.java

61, 71, 81, 328, 431,
612

SCameraSetPushVideoTiming.java

55, 64, 74, 319, 422,
603

SCameraSetSDTiming.java

56, 66, 76, 324, 427,
608

SensorStartCodeActivity.java

45, 56, 63, 78, 99, 127,
277

SettingSDCardActivity.java

244, 266, 351, 364,
543, 757, 801, 968

BindSensorListAdapter.java

32, 38, 44, 50

PushVideoTimingAdapter.java

26, 33, 39, 45, 51

ViewPagerAdapter.java

20, 26, 32, 38, 45, 51,
57, 63

DoorBean.java 9
AudioPlayer.java 18, 48, 91, 103
CustomAudioRecorder.java 53, 66, 91
DrawCaptureRect.java 19, 45
MyRender.java 278
SensorDoorData.java 59
NativeCaller.java 243
BridgeService.java 113, 238
PlayActivity.java 1232, 1252, 1292,
1343, 2719
SettingActivity.java 28, 61, 68

SettingUserActivity.java

146, 295, 307, 313

MoveVideoTimingAdapter.java

26, 33, 39, 45, 51

SearchListAdapter.java

40, 46, 52, 58, 112, 126

SensorListAdapter.java

41, 47, 53, 59

VideoTimingAdapter.java

24,31, 37, 43, 49

|¥)”me |Modifiers should be declared in the correct order

19

sonar

Driving_Reminder_Assistant Sonar Report

AR A

MR

The Java Language Specification recommends listing modifiers in
the following order:

. Annotations

. public

. protected

. private

. abstract

. static

. final

. transient

. volatile

10. synchronized

11. native

12. strictfp

Not following this convention has no technical impact, but will
reduce the code's readability because most developers are used to
the standard

order.

Noncompliant Code Example

OoONOUTDAWN R

}static public void main(String[] args) { // Noncompliant

Compliant Solution

Fublic static void main(String[] args) { // Compliant

CustomAudioRecorder.java 19

EncryptionUtils.java 31

NativeCaller.java 12, 32, 34, 36, 38, 41,

43, 45, 47, 49, 53, 57,
59, 61, 63, 65, 68, 71
73,76, 79, 81, 83, 85,
87, 89, 91, 92, 94, 96,
98, 100, 102, 110, 112,
114,119, 121, 123,
124, 125, 126, 129,
132, 138, 142, 145,
148, 152, 156, 160,
178, 192, 196, 199,
202, 205, 207, 220,
223, 227, 228, 229,
234, 236, 238, 240,
242, 250, 256, 258,
263, 268, 270, 272,
274, 276, 282, 288,
290, 297, 300, 303,
305, 307, 309, 313,
315, 329, 342, 352,
360, 365

PlayActivity.java

2733

20

sona r Driving_Reminder_Assistant

Sonar Report

variables

Ry Private fields only used as local variables in methods should become local

Noncompliant Code Example
public class Foo {

private int a;

private int b;

public void doSomething(int y) {
a=y+5;

if(@a == 0) {
-

.

public void doSomethingElse(int y) {
b=y+3;

=
}

Compliant Solution
public class Foo {

public void doSomething(int y) {
inta=y+5;

if(@a == 0) {

}
}

public void doSomethingElse(int y) {

FNHEA When the value of a private field is always assigned to in a class'
methods before being read, then it is not being used to store class
information. Therefore, it should become a local variable in the
relevant methods to prevent any misunderstanding.

intb=y+3;

}

}

Exceptions

This rule doesn't raise any issue on annotated field.
MIHBER ST
SettingUserActivity.java 35
AddCameraActivity.java 66, 73, 74, 75
MessageActivity.java 37
PlayCommonManager.java 78, 95

SCameraSetPlanVideoTiming.java

45, 49, 49, 49, 56, 57

SCameraSetPushVideoTiming.java

39, 43, 43, 43, 50, 51

SCameraSetSDTiming.java

40, 44,44,44,51, 52

SensorStartCodeActivity.java

32, 33, 37, 39

21

sona r Driving_Reminder_Assistant

Sonar Report

SettingAlarmActivity.java 53
SettingSDCardActivity.java 81, 87
MessageAdapter.java 27
PushVideoTimingAdapter.java 23
ShowLocPicGridViewAdapter.java 25
VideoFramePool.java 37, 38
BridgeService.java 863, 872

PlayActivity.java

263, 298, 302, 302,
302, 302, 302, 327,
351, 352, 912, 943, 944

SettingActivity.java 19, 20, 21, 23, 23, 23,
24
MoveVideoTimingAdapter.java 23
VideoTimingAdapter.java 21
WifiScanListAdapter.java 20

|f)ﬂbwu |Mu|tip|e variables should not be declared on the same line

22

sonar

Driving_Reminder_Assistant Sonar Report

FNFEIA Declaring multiple variables on one line is difficult to read.
Noncompliant Code Example
class MyClass {
private int a, b;
public void method(){
int ¢; int d;
}
}
Compliant Solution
class MyClass {
private int a;
private int b:
public void method(){
intc
int d;
}
}
See
MISRA C++:2008, 8-0-1 - An init-declarator-list or a member-
declarator-list shall consist of a single init-declarator or member-
declarator
re Cpectlve
ERT, DCL52-J). - Do not declare more than one variable per
declaration
CERT, DCLO4-C. - Do not declare more than one variable per
declaration
MAEEFR BT
MessageActivity.java 38
SCameraSetPlanVideoTiming.java 46, 47, 48, 48, 48, 48,
48, 48, 49, 49, 50, 54,
429
SCameraSetPushVideoTiming.java 40, 41, 42, 42, 42, 42,
42,42, 43, 43, 44, 48,
420
SCameraSetSDTiming.java 41,42, 43, 43, 43, 43,
43, 43, 44, 44, 45, 49,
425
SensorStartCodeActivity.java 31, 39, 39,41, 41
DrawCaptureRect.java 15, 15,15
PlayActivity.java 302, 302, 302, 302,
302, 302, 302, 302, 357
SettingActivity.java 23, 23

23

sonar

Driving_Reminder_Assistant Sonar Report

M |Class variable fields should not have public accessibility
DA Public class variable fields do not respect the encapsulation
principle and has three main disadvantages:
Additional behavior such as validation cannot be added.
The internal representation is exposed, and cannot be changed
afterwards. _ _
Member values are subject to change from anywhere in the
code and may not meet the programmer's assumptions.
By using private attributes and accessor methods (set and get),
unauthorized modifications are prevented.
Noncompliant Code Example
public class MyClass {
public static final int SOME_CONSTANT = 0; // Compliant -
constants are not checked
public String firstName; // Noncompliant
}
Compliant Solution
public class MyClass {
public static final int SOME_CONSTANT = 0; // Compliant -
constants are not checked
private String firstName; // Compliant
public String getFirstName() {
} return firstName;
public void setFirstName(String firstName) {
this.firstName = firstName;
}
Exceptions -)) o
fBelé:lause they are not modifiable, this rule ignores public final
ields.
See
MITRE, CWE-493 - Critical Public Variable Without Final
Modifier
XHRFR BT
SensorStartCodeActivity.java 271
BindSensorListAdapter.java 172,174,175,176
PushVideoTimingAdapter.java 21
ViewPagerAdapter.java 12
DoorBean.java 4,5,6
CustomBufferData.java 7,8

24

sonar

Driving_Reminder_Assistant

Sonar Report

CustomBufferHead.java 4,5
Log.java 9
SensorDoorData.java 17
SensorTimeUtil.java 15
SystemValue.java 4,5,6
BridgeService.java 817, 818, 819, 835,
906, 926, 949
PlayActivity.java 272, 273, 343, 344,
1920, 2730
MoveVideoTimingAdapter.java 21
SearchListAdapter.java 29, 30
SensorListAdapter.java 20, 32, 33, 34, 35, 36
VideoTimingAdapter.java 19
DefenseConstant.java i,46, 7,8,9, 10, 11, 13,
HttpConstances.java 8,10,12, 15
HttpHelper.java 86

I |Methods should not have too many parameters

DA A long parameter list can indicate that a new structure should be
created to wrap the numerous parameters or that the function is
doing too many

things.

Noncompliant Code Example

With a maximum number of 4 parameters:

public void doSomething(int paraml, int param2, int param3,
String param4, long paramb) {

}

Compliant Solution

ublic void doSomething(int param1, int param2, int param3,
tring param4) {

}

Exceptions

Methods annotated with Spring's @RequestMapping (and
related shortcut annotations, like @GetRequest) or
@JsonCreator may have a lot of parameters, encapsulation being

Eossible. Such methods are therefore ignored.
AR FR EHT

NativeCaller.java 12,132, 138, 148, 152,
156, 160, 178, 329

sonar

Driving_Reminder_Assistant Sonar Report

BridgeService.java 75, 88, 493, 512, 540,

549, 555, 598, 604,
619, 627, 636, 725,
736, 750, 890, 896,
909, 929, 952, 993,
1022, 1063, 1077,

1090, 1115, 1139,

1151, 1169, 1198,

1284, 1336, 1341,

1374, 1403

F |Dead stores should be removed
AR A dead store happens when a local variable is assigned a value
that is not read by any subsequent instruction. Calculating or
retrievin% a value
only to then overwrite it or throw it away, could indicate a serious
error in the code. Even if it's not an error, it is at best a waste of
resources.
Therefore all calculated values should be used.
Noncompliant Code Example
i = a + b; // Noncompliant; calculation result not used before value
is overwritten
i = compute();
Compliant Solution
i=a+b;
i += compute();
Exceptions
This rule ignores initializations to -1, 0, 1, null, true, false and
See
MITRE, CWE-563 - Assignment to Variable without Use
(‘Unused Variable")
CERT, MSC13-C. - Detect and remove unused values
CERT, MSC56-J. - Detect and remove superfluous code and
values
XHER ERAT
AddCameraActivity.java 389, 532
PlayCommonManager.java 348, 549
SCameraSetPlanVideoTiming.java 127,128, 153, 154
SCameraSetPushVideoTiming.java 120, 121, 146, 147
SCameraSetSDTiming.java 122,123,148, 149
BindSensorListAdapter.java 70, 81, 86, 91, 96, 101,
106, 111, 116,120
ShowLocPicGridViewAdapter.java 185
AudioPlayer.java 58
DatabaseUtil.java 216, 218, 220, 222

26

sonar

Driving_Reminder_Assistant Sonar Report

BridgeService.java

701, 706

PlayActivity.java

629, 1907, 2198, 2200,
2202, 2206, 2234

FA |The diamond operator ("<>") should be used
AR Java 7 introduced the diamond operator (<>) to reduce the

\O/Ierl?osity of generics code. For instance, instead of having to

eclare

a List's type in both its declaration and its constructor, you can

now simplify the constructor declaration with <>,

and the com;r)]iler will infer the type.

Note that this rule is automatically disabled when the project's

sonar.java.source is lower than 7.

Noncompliant Code Example

List<String> strings = new ArrayList<String>(); // Noncompliant

Map<String,List<Integer>> map = new

HashMap <String, List<Integer>>(); // Noncompliant

Compliant Solution

List<String> strin?s = new ArrayList<>();

Map <String,List<Integer>> map = new HashMap <> ();
XIHEFR ERAT
MessageActivity.java 130
SCameraSetPlanVideoTiming.java 77,304
SCameraSetPushVideoTiming.java 70, 295
SCameraSetSDTiming.java 72, 300
SettingSDCardActivity.java 238, 260
BindSensorListAdapter.java 27,130
PushVideoTimingAdapter.java 28, 157
ShowLocPicGridViewAdapter.java 32,136,191
TensorFlowObjectDetectionAPIModel.java 55, 180, 202
CustomBuffer.java 8
SensorDoorData.java 17,29, 31,44, 46
SensorTimeUtil.java 15
PlayActivity.java 1395, 1920, 1931
MoveVideoTimingAdapter.java 28, 157
SearchListAdapter.java 26, 98
SensorListAdapter.java 20
VideoTimingAdapter.java 26, 168
WifiScanListAdapter.java 25

EAd

|Unnecessary imports should be removed

27

sonar

Driving_Reminder_Assistant Sonar Report

FIEES oS

|gnored.

The imports part of a file should be handled by the Integrated
Development Environment (IDE), not manually by the developer.
Unused and useless imports should not occur if that is the case.
Leaving them in reduces the code's readability, since their
presence can be confusing.

Noncompliant Code Example

package my.company;

import java.lang.String;
always implicitly imported
import my.company.SomeClass; // Noncompliant; same-package
files are always implicitly imported

import java.io.File; // Noncompliant; File is not used

// Noncompliant; java.lang classes are

import my.company2.SomeType;
import my.company2.SomeType; // Noncompliant; 'SomeType' is
already imported

class ExampleClass {

public String someStringr;
public SomeType something;

}

Exceptions) _
Imports for types mentioned in comments, such as Javadocs, are

X{HEFR BT
MessageActivity.java 6
MyListView.java 5
SCameraSetPlanVideoTiming.java 22
SCameraSetPushVideoTiming.java 17
SCameraSetSDTiming.java 17
SensorStartCodeActivity.java 12, 20
SettingAlarmActivity.java 19, 20, 21, 37
SettingSDCardActivity.java 7,31, 32, 36, 45, 46
StartActivity.java 17
MessageAdapter.java 13,18
PushVideoTimingAdapter.java 15
DrawCaptureRect.java 8
MyStringUtils.java 6,9
SensorDoorData.java 5
StringUtils.java 7,9
ToastUtils.java 6

Tools.java 5,11,12
VuidUtils.java 3,4,5,6
MoveVideoTimingAdapter.java 15

28

sonar

Driving_Reminder_Assistant

Sonar Report

else" statement

Ry Return of boolean expressions should not be wrapped into an "if-then-

DA Return of boolean literal statements wrapped into if-then-else
ones should be simplified.
Similarly, method invocations wrapped into if-then-else differing
only from boolean literals should be simplified into a single
invocation.
Noncompliant Code Example
boolean foo(Object param) {
if (expression) { // Noncompliant
bar(param, true, "qix");
} else { _
bar(param, false, "qix");
if (expression) { // Noncompliant
return true;
} else {
} return false;
}
Compliant Solution
boolean foo(Object param) {
bar(param, expression, "qix");
} return expression;
SHRFR BT
MessageActivity.java 64
PlayCommonManager.java 691
SCameraSetPlanVideoTiming.java 222, 229, 236, 243,
250, 257, 264
SCameraSetPushVideoTiming.java 213, 220, 227, 234,
241, 248, 255
SCameraSetSDTiming.java 218, 225, 232, 239,
246, 253, 260
SettingAlarmActivity.java 152
SettingSDCardActivity.java 131
MyStringUtils.java 15
SensorTimeUtil.java 25
SystemValue.java 12
VuidUtils.java 16
PlayActivity.java 1602

|fmmu |Unused "private" fields should be removed

29

sonar

Driving_Reminder_Assistant Sonar Report

FIEES oS

Moreoveri this rule doesn't raise any issue on annotated fields.

If a private field is declared but not used in the program, it can
be”considered dead code and should therefore be removed. This
Wi

improve maintainability because developers will not wonder what
the variable is used for.

Note that this rule does not take reflection into account, which
means that issues will be raised on private fields that are only
accessed using the reflection APL

Noncompliant Code Example

public class MyClass {
private int foo = 42;

public int compute(int a) {
return a * 42;

}

Compliant Solution

public class MyClass {
public int compute(int a) {
returna * 42;

}
}

Exceptions

The Java serialization runtime associates with each serializable

élas.s a version number, called serialVersionUID , which is used
urin

deser?alization to verify that the sender and receiver of a serialized

object have loaded classes for that object that are compatible with

respect to

serialization.

A serializable class can declare its own serialVersionUID explicitly

by declaring a field named serialVersionUID that

must be static, final, and of t¥pe long. By definition those

serialVersionUID fields should not be reported by this rule:

public class MyClass implements java.io.Serializable {
private static final long serialVersionUID = 42L;

B FR EAT
SettingUserActivity.java 35
AddCameraActivity.java 66
MessageActivity.java 35
PlayCommonManager.java 75, 95, 97, 101
SCameraSetPlanVideoTiming.java 51
SCameraSetPushVideoTiming.java 45
SCameraSetSDTiming.java 46
SensorStartCodeActivity.java 33
SettingAlarmActivity.java 52,53
EncryptionUtils.java 21

30

son a r Driving_Reminder_Assistant Sonar Report
VideoFramePool.java 10
BridgeService.java 22,863, 872

PlayActivity.java

280, 298, 910, 912,
913, 920, 943, 944

SettingActivity.java

19, 20,21

SettingUserActivity.java

200

M |"public static" fields should be constant
FRNHEA There is no good reason to declare a field "public" and "static"

V\ﬂthout also declaring it "final". Most of the time this is a kludge to

share a

state among several objects. But with this approach, any object

can do whatever it wants with the shared state, such as setting it

to

null .

Noncompliant Code Example

public class Greeter {

public static Foo foo = new Foo();

-

Compliant Solution

public class Greeter {

public static final Foo FOO = new Foo();
-
See
MITRE, CWE-500 - Public Static Field Not Marked Final
CERT OBJ10-J. - Do not use public static nonfinal fields
SLHESR AT
Log.java 9
SensorDoorData.java 17
SensorTimeUtil.java 15
SystemValue.java 4,5,6
BridgeService.java 817, 818, 819, 835,
906, 926, 949

PlayActivity.java 1920

DefenseConstant.java 5,6,7,8,9, 10, 11, 13,

14
HttpConstances.java 8,10,12, 15
HttpHelper.java 86

31

sonar

Driving_Reminder_Assistant Sonar Report

FA |Throwable.printStackTrace(...) should not be called
HUN$EA Throwable.printStackTrace(..) prints a Throwable and its stack
trace to some stream. By default that stream
System.Err, which could inadvertently expose sensitive
information.
Loggers should be used instead to print Throwable s, as they
have many advantages:
Users are able to easily retrieve the logs.
The format of log messages is uniform and allow users to
browse the logs easily.
This rule raises an issue when printStackTrace is used without
arguments, i.e. when the stack trace is printed to the default
stream.
Noncompliant Code Example
try {
*LL ¥
} catch(ExceEtion e){
e.printStackTrace(); // Noncompliant
Compliant Solution
try {
L
} catch(Exception e) {
LOGGER.log("context", e);
See
OWASP Top 10 2017 Category A3 - Sensitive Data Exposure
MITRE, CWE-489 - Leftover Debug Code
X{HBETR BT
AddCameraActivity.java 88
MessageActivity.java 148
PlayCommonManager.java 416, 423
AudioPlayer.java 80
EncryptionUtils.java 42
MyRender.java 279
SensorTimeUtil.java 31
StringUtils.java 46
Tools.java 70, 76,103, 109
VideoFramePool.java 67
BridgeService.java 308, 374, 439, 461, 486
PlayActivity.java 1259, 1267, 1275,
1283, 1661, 1668, 2776

32

sonar

Driving_Reminder_Assistant Sonar Report

Sl |Methods should not be empty
FRNHEA k;I'hc?re are several reasons for a method not to have a method
ody:
It is an unintentional omission, and should be fixed to prevent
an unexpected behavior in production.)
It is not yet, or never will be, supported. In this case an
UnsupportedOperationException should be thrown.
The method is an intentionally-blank override. In this case a
nested comment should explain the reason for the blank override.
Noncompliant Code Example
loublic void doSomething() {
Fublic void doSomethingElse() {
Compliant Solution
@Override
public void doSomething() {
}// Do nothing because of X and Y.
@Override
public void doSomethingElse() {
}throw new UnsupportedOperationException();
Exceptions
Default (no-argument) constructors are ignored when there are
other constructors in the class, as are empty methods in abstract
classes.
public abstract class Animal { o
;/0|d speak() { // default implementation ignored
}
MAEEFR BT
AddCameraActivity.java 810
SettingAlarmActivity.java 321, 336
BridgeService.java 503, 508, 1341, 1348,
1353, 1357, 1361,
1365, 1369, 1384,
1388, 1443, 1447
PlayActivity.java 982, 992, 1448, 1452,
2003, 2008
SettingUserActivity.java 260, 266
VcmApi.java 88

33

sonar

Driving_Reminder_Assistant Sonar Report

#I0) [Cognitive Complexity of methods should not be too high
AR R Cognitive Complexity is a measure of how hard the control flow of
a method is to understand. Methods with high Cognitive
Complexity will be
difficult to maintain.
See
Cognitive Complexity
SR AT
AddCameraActivity.java 132
SCameraSetPlanVideoTiming.java 96, 217, 327
SCameraSetPushVideoTiming.java 89, 208, 318
SCameraSetSDTiming.java 91, 213, 323
ShowLocPicGridViewAdapter.java 133
BridgeService.java 245, 1198
PlayActivity.java 745, 861, 948, 1002,
1465, 1828, 2296,
2433, 2554
F |Strinqs should not be concatenated using '+' in a loop
MR Strinﬁs are immutable objects, so concatenation doesn't simply
addh'cI e new String to the end of the existing string. Instead, in
each loop
iteration, the first String is converted to an intermediate object
type, the second string is appended, and then the intermediate
object is converted
back to a String. Further, performance of these intermediate
o?eratlons degrades as the String gets longer. Therefore, the use
of StringBuilder is
preferred.
Noncompliant Code Example
String str = "";
for (inti = 0; i < arrayOfStrings.length ; ++i) {
str = str + arrayOfStringsli];
Compliant Solution
StringBuilder bld = new StringBuilder();
for %nti = 0; i < arrayOfStrings.length; ++i) {
bld.append(arrayOfStringsi]);
String str = bld.toString();
A4FTR BT
PushVideoTimingAdapter.java 93, 98, 103, 108, 113,
118, 123
StringUtils.java 31

34

sonar

Driving_Reminder_Assistant Sonar Report

MoveVideoTimingAdapter.java 93, 98, 103, 108, 113,
118, 123

VideoTimingAdapter.java 91, 98, 105, 112, 119,
126, 133

#IM |"@Override" should be used on overriding and implementing methods

WL Using the @Override annotation is useful for two reasons :

class like toString“ : hashCoden -

It elicits a warning from the compiler if the annotated method
doesn't actually override anything, as in the case of a misspelling.

It improves the readability of the source code by making it
obvious that methods are overridden.

Noncompliant Code Example

class ParentClass {
public boolean doSomething(){...}

class FirstChildClass extends ParentClass {
} public boolean doSomething(){...}; // Noncompliant

Compliant Solution

class ParentClass {
public boolean doSomething(){...}

class FirstChildClass extends ParentClass {
@Override
public boolean doSomething(){...} // Compliant

}

Exceptions
This rule is relaxed when overriding a method from the Object

XHEFR EHT
AddCameraActivity.java 614
PlayCommonManager.java 370
SCameraSetPlanVideoTiming.java 606
SCameraSetPushVideoTiming.java 597
SCameraSetSDTiming.java 602
SensorStartCodeActivity.java 242
SettingAlarmActivity.java 56
SettingSDCardActivity.java 92, 285, 603, 637, 674,
696, 832, 920
StartActivity.java 22
SensorCustomListView.java 16
PlayActivity.java 391, 439, 654, 1615
SettingUserActivity.java 56

sonar

Driving_Reminder_Assistant Sonar Report

#0) [String literals should not be duplicated
FRNHEA Duplicated string literals make the process of refactoring error-
prone, since you must be sure to update all occurrences.
On the other hand, constants can be referenced from many
places, but only need to be updated in a single place.
Noncompliant Code Example
With the default threshold of 3:
public void run() {
prepare("actionl"); // Noncompliant - "actionl”
is duplicated 3 times
execute("actionl");
release("actionl");
@SuppressWarning("all") // Compliant -
annotations are excluded
private void method1() { /* ... */ }
@SuppressWarning("all")
private void method2() { /* ... */ }
public String method3(String a) {
System.out.printIn(""" + a + "'"); // Compliant - literal """
has less than 5 characters and is excluded)
return ""; _ // Compliant - literal "" has less
;chan 5 characters and is excluded
Compliant Solution
private static final String ACTION_1 = "actionl"; // Compliant
public void run() {
prepare(ACTION_1); // Compliant
execute(ACTION_1);
release(ACTION_1);
Exceptions
To prevent generating some false-positives, literals having less
than 5 characters are excluded.
MAEEFR BT
AddCameraActivity.java 656
SensorStartCodeActivity.java 68
SettingSDCardActivity.java 292, 292, 545
BindSensorListAdapter.java 65, 75
ShowLocPicGridViewAdapter.java 73
DatabaseUtil.java 62, 64, 86, 294, 294,
308, 331
BridgeService.java 252, 253, 1251
PlayActivity.java 1172, 1172

0 |Unused method parameters should be removed |

36

sonar

Driving_Reminder_Assistant Sonar Report

FIEES oS

Unused parameters are misleading. Whatever the values passed
to such parameters, the behavior will be the same.
Noncompliant Code Example

void doSomething(int a, intb) { // "b" is unused
compute(a);

Compliant Solution

void doSomething(int a) {
compute(a);

Exceptions o
The rule will not raise issues for unused parameters:

that are annotated with @javax.enterprise.event.Observes
in overrides and implementation methods
in interface default methods
) icrlm_ non-private methods that only throw or that have empty
odies
in annotated methods, unless the annotation is
@SuppressWarning("unchecked") or
@Supﬁ)ressWarning("rawtypes") ,in
which case the annotation will be ignored
in overridable methods (non-final, or not member of a final
class, non-static, non-private), if the parameter is documented
with a proper
javadoc.

@Override
void doSomething(int a, int b) { // no issue reported on b
compute(a);

public void foo(String s) {
// designed to be extended but noop in standard case

protected void bar(String s) {
//open-closed principle

public void qix(String s) {
throw new UnsupportedOperationException("This method should
be implemented in subclasses”);

**

* @param s This string may be use for further computation in
overriding classes
*

protected void foobar(int a, String s) { // no issue, method is

overridable and unused parameter has proper javadoc
compute(a);

See

37

sonar

Driving_Reminder_Assistant Sonar Report

MISRA C++:2008, 0-1-11 - There shall be no unused parameters
(named or unnamed) in nonvirtual functions. _
MISRA C:2012, 2.7 - There should be no unused parameters in
functions
CERT, MSC12-C. - Detect and remove code that has no effect
or is never
executed
MG BER BT
PlayCommonManager.java 176, 182
DatabaseUtil.java 346
MyRender.java 312
Tools.java 82
BridgeService.java 76, 89, 173, 494, 549,
598, 605, 619, 654,
736, 751, 1403
SettingUserActivity.java 222
HttpHelper.java 83

thrown

AR Local variables should not be declared and then immediately returned or

FMIEES oS

Declaring a variable only to immediately return or throw it is a
bad practice.

Some developers argue that the practice improves code
readability, because it enables them to explicitly name what is
beln%returned. However, this

variable is an internal imdplementation detail that is not exposed to
the callers of the method. The method name should be sufficient
for callers to

know exactly what will be returned.

Noncompliant Code Example

public long computeDurationInMilliseconds() {
long duration = (((hours * 60) + minutes) * 60 + seconds) * 1000

return duration;

}
public void doSomething() {

RuntimeException myException = new RuntimeException();
throw myException;

Compliant Solution
public Ion]?l computeDurationInMilliseconds() {
return (((hours * 60) + minutes) * 60 + seconds) * 1000 ;

public void doSomething() {
}throw new RuntimeException();

38

sona r Driving_Reminder_Assistant

Sonar Report

XHEFR EHT
AddCameraActivity.java 852
PlayCommonManager.java 442, 627
SCameraSetPlanVideoTiming.java 282, 291
SCameraSetPushVideoTiming.java 273, 282
SCameraSetSDTiming.java 278, 287
MySharedPreferenceUtil.java 27,42
MyStringUtils.java 50
SensorDoorData.java 83
SensorTimeUtil.java 106, 113, 120
Tools.java 119
PlayActivity.java 1679

FL |Source files should not have any duplicated blocks
HUNFEA An issue is created on a file as soon as there is at least one block
of duplicated code on this file
XHEFR EHT
PlayActivity.java N/A
AddCameraActivity.java N/A
PlayCommonManager.java N/A
SCameraSetPlanVideoTiming.java N/A
SCameraSetPushVideoTiming.java N/A
SCameraSetSDTiming.java N/A
SettingAlarmActivity.java N/A
SettingSDCardActivity.java N/A
MessageAdapter.java N/A
PushVideoTimingAdapter.java N/A
MyRender.java N/A
MoveVideoTimingAdapter.java N/A
VideoTimingAdapter.java N/A
WifiScanListAdapter.java N/A
PushBindDeviceBean.java N/A
SetLanguageBean.java N/A
VcmApi.java N/A

|¥)”me |Unused local variables should be removed

39

sonar

Driving_Reminder_Assistant Sonar Report

RINFEA If a local variable is declared but not used, it is dead code and
should be removed. Doing so will improve maintainability because
developers will
not wonder what the variable is used for.

Noncompliant Code Example

public int numberOfMinutes(int hours) {
int seconds = 0; // seconds is never used
return hours * 60;

Compliant Solution

public int numberOfMinutes(int hours) {
return hours * 60;

SR AT

AddCameraActivity.java 389, 532

PlayCommonManager.java 348, 549

BindSensorListAdapter.java 70, 81, 83

DatabaseUtil.java 216, 218, 220, 222

Tools.java 60, 149

PlayActivity.java 629, 1907, 2200

AR [Public constants and fields initialized at declaration should be "static final"
rather than merely "final"

40

sonar

Driving_Reminder_Assistant

Sonar

Report

A Making a public constant just final as opposed to static final
leads to duplicating its value for every
instance of the class, uselessly increasing the amount of memory
required to execute the application. o
_Further, when a non- public, final field isn't also static, it
implies that different instances can have o o
different values. However, initializing a non- static final field in its
declaration forces every instance to have the same value. So such
fields should either be made static or initialized in the
constructor.
Noncompliant Code Example
public class Myclass {
public final int THRESHOLD = 3;
}
Compliant Solution
public class Myclass { _
public static final int THRESHOLD = 3; // Compliant
Exceptions S)
No issues are reported on final fields of inner classes whose type
is not a primitive or a String. Indeed according to the Java
specification:
An inner class is a nested class that is not explicitly or implicitly
%esclared static. Inner classes may not declare static initializers
(88.7)
or member interfaces. Inner classes may not declare static
members, unless they are compile-time constant fields (§15.28).
AR AT
PlayActivity.java 942
SettingAlarmActivity.java 50, 51, 52
SettingSDCardActivity.java 62, 68, 69, 70
CircularProgressBar.java 18
PlayActivity.java 278, 279, 280
SettingUserActivity.java 36, 37, 38, 39

|f)|'d,mu |Uti|ity classes should not have public constructors

41

sonar

Driving_Reminder_Assistant Sonar Report

RINFEA Utility classes, which are collections of static members, are not
meant to be instantiated. Even abstract utility classes, which can
be extended, should not have public constructors. _

Java adds an implicit public constructor to every class which does
not define at least one explicitly. Hence, at least one non-public
constructor
should be defined.
Noncompliant Code Example
class StringUtils { // Noncompliant
public static String concatenate(String s1, String s2) {
return s1 + s2;
}
}
Compliant Solution
class StringUtils { // Compliant
private Strin?UtiIs() { . N
throw new IllegalStateException("Utility class");
public static String concatenate(String s1, String s2) {
return sl + s2;
}
Exceptions)) o))
When class contains public static void main(String[] args)
n}:_ethod it is not considered as utility class and will be ignored by
this
rule.

SHEFR ERAT

ContentCommon.java 3

GsonUtils.java 10

Log.java 8

MySharedPreferenceUtil.java 12

MyStringUtils.java 11

SensorDoorData.java 13

SensorTimeUtil.java 9

StringUtils.java 17

SystemValue.java 3

ToastUtils.java 13

Tools.java 30

VuidUtils.java 8

NativeCaller.java 6

DefenseConstant.java 3

HttpConstances.java 3

42

sonar

Driving_Reminder_Assistant Sonar Report

#IM) _|Static non-final field names should comply with a naming convention
AR R Shared naming conventions allow teams to collaborate efficiently.
This rule checks that static non-final field names match a provided
regular
expression.
Noncompliant Code Example
With the default regular expression *[a-z][a-zA-Z0-9]*$:
public final class MyClass {
private static String foo_bar;
Compliant Solution
class MyClass {
} private static String fooBar;
AHFTR BT
PlayActivity.java 218, 220
DefenseConstant.java 56,7,8,9, 10, 11, 13,
14
HttpConstances.java 8,10,12, 15

s U] |Standard outputs should not be used directly to log anything

AR fIA

MHERR

When logging a message there are several important
requirements which must be fulfilled:

The user must be able to easily retrieve the logs
The format of all logged message must be uniform to allow the
user to easily read the log
Logged data must actually be recorded
Sensitive data must only be logged securely
If a program directly writes to the standard outputs, there is
absolutely no way to comply with those requirements. That's why
defining and using a _
dedicated logger is highly recommended.
Noncompliant Code Example
System.out.printIn("My Message"); // Noncompliant
Compliant Solution
logger.log("My Message");
See

CERT, ERRO2-J. - Prevent exceptions while logging data

EAUT

SensorStartCodeActivity.java 102, 146, 156, 179, 283

AudioPlayer.java

66, 70

43

sonar

Driving_Reminder_Assistant

Sonar Report

DatabaseUtil.java

144

Log.java

12,16

SensorTimeUtil.java

48, 77, 153, 237

0 |Instance methods should not write to "static" fields
A Correctly updating a static field from a non-static method is
tricry tlo get right and could easily lead to bugs if there are
multiple
class l|Onstances and/or multiple threads in play. Ideally, static
fields are only updated from synchronized static
methods.
This rule raises an issue each time a static field is updated from a
non-static method.
Noncompliant Code Example
public class MyClass {
private static int count = 0;
public void doSomething() {
}cdﬁnt+ +; // Noncompliant
}
MAEEFR BT
AddCameraActivity.java 490, 583, 584, 585
SettingSDCardActivity.java 163, 164, 180, 181
PlayActivity.java 2158, 2159, 2162, 2163
VcmApi.java 45, 67

#IM [Nested blocks of code should not be left empty

AR fIA

removed.
Noncompliant Code Example

of code ?

Exceptions

Most of the time a block of code is empty when a piece of code is
really missing. So such empty block must be either filled or

for (inti =0;i <42;i++){} // Empty on purpose or missing piece

When a block contains a comment, this block is not considered to
be empty unless it is a synchronized block. synchronized
blocks are still considered empty even with comments because

thex can still affect program flow.

B FR BT
AddCameraActivity.java 127, 135
PlayCommonManager.java 684
StartActivity.java 50

44

son a r Driving_Reminder_Assistant Sonar Report
EncryptionUtils.java 75
Tools.java 159
BridgeService.java 1295, 1300, 1305,
1310, 1315
HttpHelper.java 93

AR Declarations should use Java collection interfaces such as "List" rather than
specific implementation classes such as "LinkedList"
MR The purpose of the Java Collections APl is to provide a well
geflr]led ierarchy of interfaces in order to hide implementation
etails.
Implementing classes must be used to instantiate new collections,
but the result of an instantiation should ideally be stored in a
variable whose o
tﬁ:g is a Java Collection interface. .
is rule raises an issue when an implementation class:
is returned from a public method.
is accepted as an ar(_?pment to a public method.
is exposed as a public member.
Noncompliant Code Example
public class Employees {
rivate HashSet<Employee > emplo?(ees = new
ashSet<Employee>();); Noncompliant - "employees" should
have type "Set" rather than "HashSet"
ublic HashSet<Employee> getEmployees() { //
oncompliant
} return employees;
}
Compliant Solution
public class Employees {
rivate Set<Employee> employees = new HashSet<Employee>();
//pCompllant
public Set<Employee> getEmployees() { //
Compliant
} return employees;
}
N4ETR BT
MessageAdapter.java 29
PushVideoTimingAdapter.java 21
ShowLocPicGridViewAdapter.java 114,133
SensorDoorData.java 17,78
MoveVideoTimingAdapter.java 21
SensorListAdapter.java 20, 22

45

sona r Driving_Reminder_Assistant Sonar Report

VideoTimingAdapter.java 19
WifiScanListAdapter.java 114

I |Co||ection.isEmpty() should be used to test for emptiness

AR Using Collection.size() to test for emptiness works, but using
Collection.isEmpty() makes the code more readable and can
be more performant. The time complexity of any isEmpty()
method implementation should be O(1) whereas some
implementations

of size() can be O(n).

Noncompliant Code Example

if &myii/ollection.size() == 0) { // Noncompliant
e
Compliant Solution

if (myCollection.isEmpty()) {

/* .

}
X{HBEFR ST
SCameraSetPlanVideoTiming.java 314, 459, 477
SCameraSetPushVideoTiming.java 305, 448, 466
SCameraSetSDTiming.java 310, 455, 473
PlayActivity.java 2233
WifiScanListAdapter.java 59

l#M [Math operands should be cast before assignment

46

sonar

Driving_Reminder_Assistant Sonar Report

FIEES oS

When arithmetic is performed on integers, the result will always
be an integer. You can assign that result to a long,
double, or float with automatic type conversion, but having
started as an int or long, the result
will likely not be what you expect.

For instance, if the result of int division is assigned to a floating-
point variable, precision will have been lost before the
assignment. Likewise, if the result of multiplication is assigned to a
long , it may have already overflowed before the assignment.

In either case, the result' will not be what was expected. Instead, at
least one operand should be cast or promoted to the final type
before the
operation takes place.

Noncompliant Code Example

float twoThirds = 2/3; // Noncompliant; int division. Yields 0.0

long millisinYear = 1_000*3_600*24*365; // Noncompliant; int
multiplication. Yields 1471228928

long bigNum = Integer.MAX_VALUE + 2; // Noncompliant. Yields -
2147483647

long bigNegNum = Integer.MIN_VALUE-1; //Noncompliant, gives
a positive result instead of a negative one.

Date myDate = new Date(seconds * 1_000); //Noncompliant, won't
produce the expected result if seconds > 2_147_483

Eublic long comfute(int factor){)
return factor * 10_000; //Noncompliant, won't produce the
expected result if factor > 214_748

}

public float compute2(long factor){
return factor / 123; //Noncompliant, will be rounded to closest
long integer

Compliant Solution

float twoThirds = 2f/3; // 2 promoted to float. Yields 0.6666667
long millisinYear = 1_000L*3_600*24*365; // 1000 promoted to
long. Yields 31_536_000_000

Ionlg bingum = Inte%er.MAX_VALUE + 2L; // 2 promoted to long.
Yields 2 147 483 64

long bigNegNum = Integer.MIN_VALUE-1L; // Yields -

2 147 483 649

Date myDate = new Date(seconds * 1_000L);

ic.).ublic long compute(int factor){
return factor * 10_000L;

public float compute2(long factor){
return factor / 123f;

or

float twoThirds = (float)2/3; // 2 cast to float

Iong millisinYear = (long)1_000*3_600*24*365; // 1_000 cast to
on

Iong bigNum = (long)Integer. MAX_VALUE + 2;

long bigNegNum = (Iong?lnteger.MIN_VALUE-1;

47

sona r Driving_Reminder_Assistant Sonar Report

Date myDate = new Date((long)seconds * 1_000);

Eublic long compute(long factor){
return factor * 10_000;

public float compute2(float factor){
return factor / 123;

See

MISRA C++:2008, 5-0-8 - An explicit integral or floating-point
conversion shall not increase the size of the underlying type of a
cvalue

expression.

MITRE, CWE-190 - Integer Overflow or Wraparound

CERT, NUM50-J. - Convert integers to floating point for
floating-point

operations

CERT, INT18-C. - Evaluate integer expressions in a larger size

before
comparing or assigning to that size
SANS Top 25 - Risky Resource Management

XHEER AT

SensorStartCodeActivity.java 157

CircularProgressBar.java 82

DrawCaptureRect.java 50, 51, 51, 51, 52, 53,
53,53

#IM |Collapsible "if* statements should be merged
HINHEA Merging collapsible if statements increases the code's

readability.
Noncompliant Code Example

if;file I= null) ‘
i /(Iile.,ir?FiIe() | file.isDirectory()) {
o

}

Compliant Solution
if/(jile*!/= null && isFileOrDirectory(file)) {
}

private static boolean isFileOrDirectory(File file) {
} return file.isFile() || file.isDirectory();

AR FR EHT
SettingSDCardActivity.java 759, 803

48

sona r Driving_Reminder_Assistant

Sonar Report

BridgeService.java

1228, 1251

PlayActivity.java

889, 964, 973, 1927,
2137

SettingUserActivity.java

231

|%)”me |Empty statements should be removed

49

sonar

Driving_Reminder_Assistant Sonar Report

A Empty statements, i.e. ;, are usually introduced by mistake, for
example because:
It was meant to be replaced by an actual statement, but this was
forgotten.
ere was a typo which lead the semicolon to be doubled, i.e. ;;
Noncompliant Code Example
void doSomething() {
; // Noncompliant - was used as
}a kind of TODO marker
void doSomethin?EIse() {
System.out.printIn("Hello, world!");; // Noncompliant
- double ;
.
Compliant Solution
void doSomething() {}
void doSometh_in?EIse() {
System.out.printin("Hello, world!");
for (inti=0;i<3;i++);// compliant if unique statement of a
loop
.
See
MISRA C:2004, 14.3 - Before preprocessin?, a null statement
shall only occur on a line by itself; it may be followed by a
comment provided that)]
the first character following the null statement is a white-space
character.
MISRA C++:2008, 6-2-3 - Before preprocessing, a null statement
shall only occur on a line by itself; it may be followed by a
comment, provided
that the first character following the null statement is a white-
space character.
CERT, MSC12-C. - Detect and remove code that has no effect
or is never
executed
CERT, MSC51-J. - Do not place a semicolon immediately
following an if, for,
or while condition
CERT, EXP15-C. - Do not place a semicolon on the same line as
an if, for,
or while statement
MAEEFR BT
PlayCommonManager.java 575
SensorStartCodeActivity.java 268
SettingSDCardActivity.java 633, 668, 693, 707, 855

50

sona r Driving_Reminder_Assistant

Sonar Report

BridgeService.java

1105

SearchListAdapter.java

26

Fm |Loca| variables should not shadow class fields

can stron .
maintainability, of a piece of

Noncompliant Code Example

class Foo {
public int myField;

public void doSomething() {
int myField = 0;

}
}

See

CERT, DCLO1-C. - Do not reuse
variable names in subscopes
CERT, DCL51-J). - Do

AR A Overridin% or shadowing a variable declared in an outer scope
y impact the readability, and therefore the

code. Further, it could lead maintainers to introduce bugs because
they think they're using one variable but are really using another.

not shadow or obscure identifiers in subscopes

XHEFR EHT

SCameraSetPlanVideoTiming.java 576

SCameraSetPushVideoTiming.java 567

SCameraSetSDTiming.java 572

SensorStartCodeActivity.java 198

PlayActivity.java 950, 951, 952, 953,
2832

|¥)|'|me |Accessinq Android external storage is security-sensitive

51

sonar

Driving_Reminder_Assistant Sonar Report

FIEES oS

In Android applications, accessing external storage is security-
sensitive. For example, it has led in the past to the following
vulnerability:

CVE-2018-15004
CVE-2018-15002
CVE-2018-14995

Any application having the permissions
WRITE_EXTERNAL_STORAGE or READ_EXTERNAL_STORAGE can
access files stored on an

external storage, be it a private or a public file.

This rule raises an issue when the following functions are called:

android.os.Environment.getExternalStorageDirectory
android.os.Environment.getExternalStoragePublicDirectory
android.content.Context.getExternalFilesDir
android.content.Context.getExternalFilesDirs
android.content.Context.getExternalMediaDirs
android.content.Context.getExternalCacheDir
android.content.Context.getExternalCacheDirs
android.content.Context.getObbDir
android.content.Context.getObbDirs

Ask Yourself Whether

Data written to the external storage is security-sensitive and is
not encrypted. .
Data read from files is not validated.

You are at risk if you answered yes to any of those questions.
Recommended S)écure Coding Practices

Validate any data read from files.

Avoid writing sensitive information to an external storage. If this is
required, make sure that the data is encrypted properly.

Sensitive Code Example

import android.content.Context;
import android.os.Environment;

public class AccessExternalFiles {
public void accessFiles(Context context) {

Environment.getExternalStoragePublicDirectory(Environment.DIRE
CTORY_PICTURES); // Sensitive

context.getExternalFilesDir(Environment.DIRECTORY_PICTURES); //
Sensitive

}
}

See
Android Security tips on external file storage

OWASP Top 10 2017 Category Al - Injection
OWASP Top 10 2017 Category A3 - Sensitive Data Exposure

MITRE, CWE-312 - Cleartext Storage of Sensitive Information
MITRE, CWE-20 - Improper Input Validation

52

Sona r Driving_Reminder_Assistant

Sonar Report

MHERR

SANS Top 25 - Risky Resource Management
SANS Top 25 - Porous Defenses

BT
PlayCommonManager.java 322, 324, 388, 663
Tools.java 44, 88
PlayActivity.java 1634, 1702

|¥W,J|'JU |"InterruptedException“ should not be ignored

53

sonar

Driving_Reminder_Assistant Sonar Report

A InterruptedExceptions should never be ignored in the code, and
simply logging the exception counts in this case as "ignoring”. The
throwmﬂ of the InterruptedException clears the interrupted state
of the Thread, so if the exception is not handled properly the fact
that the thread was interrupted will be lost. Instead,
InterruptedExceptions should either be rethrown - immediately or
after cleaning up
the method's state - or the thread should be re-interrupted by
calling Thread.interrupt() even if this is supposed to be a
single-threaded application. AnP/ other course of action risks
delaying thread shutdown and loses the information that the
thread was interrupted -
probably without finishing its task.

Similarly, the ThreadDeath exception should also be propagated.
According to its JavaDoc:
If ThreadDeath is caught by a method, it is important that it be
rethrown so that the thread actually dies.
Noncompliant Code Example
public void run () {
try {
while (true) {
}// do stuff
}catdp](InterruptedException e) { // Noncompliant; logging is not
enou
} LO%GER.Iog(LeveI.WARN, "Interrupted!”, e);
}
Compliant Solution
public void run () {
try
while (true) {
// do stuff
}catch (Interru tedExceRtion e) {
LOGGER.log(Level. WARN, "Interrupted!”, e);
// Restore interrupted state...
} Thread.currentThread().interrupt();
}
See
MITRE, CWE-391 - Unchecked Error Condition
Dealing with InterruptedException

MHFTR BT

AddCameraActivity.java 87

MyRender.java 277

VideoFramePool.java 66

PlayActivity.java 1258, 1266, 1274,

1282, 2775

54

sonar

Driving_Reminder_Assistant Sonar Report

Ry Overriding methods should do more than simply call the same method in
the super class
LA Overriding a method just to call the same method from the super
class without performing any other actions is useless and
misleading. The only time
this is justified is in “final overriding methods, where the effect is
to lock in the parent class behavior. This rule ignores such
overrides of equals, hashCode and toString .
Noncompliant Code Example
public void doSomething() {
super.doSomething();
@Override
public boolean isLegal(Action action) {
return super.isLegal(action);
Compliant Solution
@Override
public boolean isLegal(Action action) { // Compliant - not
simply forwarding the call
return super.isLegal(new Action(/* ... */));
@Id
@Override
public int getld() { // Compliant - there is
annotation different from @Override
return super.getld();
XHER BT
AddCameraActivity.java 262, 268
BaseActivity.java 9
SensorStartCodeActivity.java 55
SettingSDCardActivity.java 439
BridgeService.java 47
SettingActivity.java 60
SettingUserActivity.java 273

|¥)|'|me |Unused "private" methods should be removed

55

sonar

Driving_Reminder_Assistant Sonar Report

FIEES oS

private methods that are never executed are dead code:
unnecessary, inoperative code that should be removed. Cleaning
out dead code
decreases the size of the maintained codebase, making it easier to
understand the program and preventing bugs from being
introduced.

Note that this rule does not take reflection into account, which
means that issues will be raised on private methods that are only
accessed using the reflection APL

Noncompliant Code Example

public class Foo implements Serializable

private Foo(){} //Compliant, private empty constructor
intentionally used to prevent any direct instantiation of a class.
public static void doSomething(){
Foo foo = new Foo();

private void unusedPrivateMethod(){...}

private void writeObject(ObjectOutputStream s){..} //Compliant,
relates to the java serialization mechanism

private void readObject(ObjectlnputStream in){..} //Compliant,
relates to the java serialization mechanism

}
Compliant Solution
public class Foo implements Serializable

private Foo(){} //Compliant, private empty constructor
intentionally used to prevent any direct instantiation of a class.
public static void doSomething(){
Foo foo = new Foo();

=

private void writeObject(ObjectOutputStream s){..} //Compliant,
relates to the java serialization mechanism

private void readObject(ObjectlnputStream in){...} //Compliant,
relates to the java serialization mechanism

}

Exceptions

This rule doesn't raise any issue on annotated methods.
XIHEFR BT
PlayCommonManager.java 283
SCameraSetPlanVideoTiming.java 575
SCameraSetPushVideoTiming.java 566
SCameraSetSDTiming.java 571
SensorStartCodeActivity.java 161, 234
HttpHelper.java 103

56

sonar

Driving_Reminder_Assistant

Sonar

Repor t

|¥W,J|'JU |"switch“ statements should have "default" clauses

57

sonar

Driving_Reminder_Assistant Sonar Report

FIEES oS

The requirement for a final default clause is defensive
programming. The clause should either take appropriate action, or
contain a

suitable comment as to why no action is taken.

Noncompliant Code Example

switch (param) { //missing default clause
case O:
doSomething();
break;
case 1:
doSomethingElse();
break;

}

switch (param) {

default: // default clause should be the last one
error();
break;

case 0O:
doSomething();
break;

case 1:
doSomethingElse();
break;

}

Compliant Solution

switch (param) {

case O:
doSomething();
break;

case 1:
doSomethingElse();
break;

default:
error();
break;

}

Exceptions

If the switch parameter is an Enum and if all the constants of
this enum are used in the case statements,

then no default clause is expected.

Example:

public enum Day {
} SUNDAY, MONDAY

switch(day) {
case SUNDAY:
doSomething();
break;
case MONDAY:
doSomethingElse();
break;

}

See

58

sonar

Driving_Reminder_Assistant Sonar Report

MISRA C:2004, 15.0 - The MISRA C switch syntax shall be used.

MISRA C:2004, 15.3 - The final clause of a switch statement shall
be the default clause

MISRA C++:2008, 6-4-3 - A switch statement shall be a well-
formed switch statement.

MISRA C++:2008, 6-4-6 - The final clause of a switch statement
shall be the default-clause

MISRA C:2012, 16.1 - All switch statements shall be well-formed

MISRA C:2012, 16.4 - Every switch statement shall have a
default label

MISRA C:2012, 16.5 - A default label shall appear as either the
first or the last switch label of a switch statement

MITRE, CWE-478 - Missing Default Case in Switch Statement
CERT, MSCO01-C. - Strive for logical completeness

X{HEFR BT
AddCameraActivity.java 622
PlayCommonManager.java 188
SettingAlarmActivity.java 289
ShowLocPicGridViewAdapter.java 160
PlayActivity.java 867, 1003, 1469

I |Inheritance tree of classes should not be too deep

AU fIA

Ob'|ect has a greater deeth than is allowed.

Inheritance is certainly one of the most valuable concepts in
object-oriented programming. It's a way to compartmentalize and
reuse code by

creating collections of attributes and behaviors called classes
which can be based on previously created classes. But abusing this
concept by creating

a deep inheritance tree can lead to veril] complex and
unmaintainable source code. Most of the time a too deep
inheritance tree is due to bad object

oriented design which has led to systematically use 'inheritance’
when for instance 'composition' would suit better.

This rule raises an issue when the inheritance tree, starting from

XIHEFR BT
MyListView.java 8
SCameraSetPlanVideoTiming.java 43
SCameraSetPushVideoTiming.java 37
SCameraSetSDTiming.java 38
SettingAlarmActivity.java 44
SettingSDCardActivity.java 51
SensorCustomListView.java 7

59

sonar

Driving_Reminder_Assistant Sonar Report

AL

"private” methods called only by inner classes should be moved to those

pUEES oS

MR

When a private method is only invoked by an inner class, there's
no reason not to move it into that class. It will still have the same
access to the outer class' members, but the outer class will be
clearer and less cluttered.

Noncompliant Code Example

public class Outie {
private int i=0;

private void increment() { // Noncompliant
i++;

}

public class Innie {
public void doTheThing() {
} Outie.this.increment();
}
}

Compliant Solution

public class Outie {
private int i=0;

public class Innie {
public void doTheThing() {
Outie.this.increment();

}

private void increment() {
}Ouﬁeﬂﬂ&H+;
}
}

EAUT

AddCameraActivity.java 132

SettingSDCardActivity.java 711, 729, 859

PlayActivity.java

425, 1308, 2799

|¥)|'|me |Generic exceptions should never be thrown

60

sonar

Driving_Reminder_Assistant Sonar Report

A Using such generic exceptions as Error, RuntimeException,
Throwable , and Exception prevents)
calling methods from handling true, system-generated exceptions
differently than application-generated errors.

Noncompliant Code Example
public void foo(String bar) throws Throwable { // Noncompliant
throw new RuntimeException("My Message"); // Noncompliant
Compliant Solution
public void foo(String bar) {
}throw new MyOwnRuntimeException("My Message");
Exceptions
Generic exceptions in the signatures of overriding methods are
i%nored, because overriding method has to follow signature of the
throw declaration) _)
in the superclass. The issue will be raised on superclass declaration
o}f the method (or won't be raised at all if superclass is not part of
the
analysis).
@Override)
public void myMethod() throws Exception {...}
Generic exceptions are also ignored in the signatures of methods
that make calls to methods that throw generic exceptions.
public void myOtherMethod throws Exception {
}doTheThmg ; // this method throws Exception
See
MITRE, CWE-397 - Declaration of Throws for Generic Exception
CERT, ERRO7-J. - Do not throw RuntimeException, Exception, or
Throwable

AR FR ERAT

TensorFlowObjectDetectionAPIModel.java 106, 113,117, 121

EncryptionUtils.java 17

StrinqUtils.java 81

ARy gynchrgnized classes Vector, Hashtable, Stack and StringBuffer should not
e use

61

sonar

Driving_Reminder_Assistant Sonar Report

FNFEIA Early classes of the Java API, such as Vector, Hashtable and
StringBuffer , were synchronized to make them
thread-safe. Unfortunately, synchronization has a big negative
impact on performance, even when using these collections from a
single thread. . '
It is better to use their new unsynchronized replacements:
ArrayList or LinkedList instead of Vector
Deque instead of Stack
HashMap instead of Hashtable
StringBuilder instead of StringBuffer
Noncompliant Code Example
Vector cats = new Vector();
Compliant Solution
ArrayList cats = new ArrayList();
Exceptions) o _ ‘
Use of those sil]nchronlzed classes is ignored in the signatures of
overriding methods.
@Override
public Vector getCats() {...}
MHFTR BT
TensorFlowObjectDetectionAPIModel.java 55
SensorTimeUtil.java 11, 86, 137, 242

|%)|'|.,mu |URIs should not be hardcoded

62

sonar

Driving_Reminder_Assistant Sonar Report

A Hard coding a URI makes it difficult to test a program: path
literals are not always portable across operating systems, a given
absolute path may . -
not exist on a specific test environment, a specified Internet URL
may not be available when executing the tests, production
environment filesystems
usually differ from the development environment, ...etc. For all
those reasons, a URI should never be hard coded. Instead, it
should be replaced by
customizable parameter.

Further even If the elements of a URI are obtained dynamically,
po(;tacljoility can still be limited if the path-delimiters are hard-
coded.
Tk(ljils (;ule raises an issue when URI's or path delimiters are hard
coded.
Noncompliant Code Example
public class Foo {
public Collection<User> listUsers() {
File userList = new File("/home/mylogin/Dev/users.txt"); // Non-
Compliant .
Collection<User> users = parse(userList);
\ return users;
}
Compliant Solution
public class Foo {
// Configuration is a class that returns customizable properties: it
can be mocked to be injected during tests.
private Configuration config;)
public Foo(Configuration myConfig) {
this.config = myConfig;
public Collection<User> listUsers() {
// Find here the way to get the correct folder, in this case using
the Configuration object
String listingFolder = S
config.getProperty("myApplication.listingFolder");
// and use this parameter instead of the hard coded path
File userList = new File(listingFolder, "users.txt"); // Compliant
Collection<User> users = parse(userList);
return users;
}
See
CERT, MSCO03-J. - Never hard code sensitive information

MHFTR BT

PlayCommonManager.java 322, 322

Tools.java 44, 88

|¥)ﬂumu |Array designators "[]" should be on the type, not the variable |

sonar

Driving_Reminder_Assistant Sonar Report

FNFEIA Array designators should always be located on the type for better
coglle r:eada ility. Otherwise, developers must look both at the type
and the
variable name to know whether or not a variable is an array.

Noncompliant Code Example
int matrix[][]; // Noncompliant
int[] matrix[]; // Noncompliant
Compliant Solution

int[][] matrix; // Compliant

MAEEFR BT

EncryptionUtils.java 23

SensorTimeUtil.java 112,119, 168

#0) [Jump statements should not be redundant
U Jump statements such as return and continue let you change
the default flow of proaram execution, butcf'ump statements
that direct the control flow to the original direction are just a
waste of keystrokes.
Noncompliant Code Example
public void foo() {
while (conditionl) {
if (condition2) { _
continue; // Noncompliant
} else {
doTheThing();
return; // Noncompliant; this is a void method
Compliant Solution
public void foo() {
while (conditionl) {
if (lcondition2) {
} doTheThing();
}
}
A4FTR BT
AddCameraActivity.java 609
PlayCommonManager.java 375
BridgeService.java 488
PlayActivity.java 1621

64

sonar

Driving_Reminder_Assistant Sonar Report

FA |Strinq function use should be optimized for single characters
FRNHEA An indexOf or lastindexOf call with a single letter String can

be made more performant by switching to a

call with a char argument.

Noncompliant Code Example

?/tring myStr = "Hello World";

i/r/wt"bos = myStr.indexOf("W"); // Noncompliant

i/r)t"c')therPos = myStr.lastindexOf("r"); // Noncompliant

Compliant Solution

?/tring myStr = "Hello World";

ir/mt"|'oos = myStr.indexOf('W");

i/r/wtubtherPos = myStr.lastindexOf('r');
X{HEFR ERAT
AddCameraActivity.java 852
ShowLocPicGridViewAdapter.java 123
MyStringUtils.java 50
Tools.java 59

|¥)ﬂbmu |Try-with-resources should be used

65

sonar

Driving_Reminder_Assistant Sonar Report

A Java 7 introduced the try-with-resources statement, which
guarantees that the resource in question will be closed. Since the
new syntax is closer
to bullet-proof, it should be preferred over the older try / catch /
finally version.

This rule checks that close -able resources are opened in a try-
with-resources statement.
Note that this rule is automatically disabled when the project's
sonar.java.source is lower than 7.
Noncompliant Code Example
FileReader fr = null;
BufferedReader br = null;
trfy {
r = new FileReader(fileName);
br = new BufferedReader(fr);
return br.readLine();
} catch (...) {
} finally {
if (br'!= null) {
trE\)/ {
r.close();
\ } catch(IOException e){...}
if (fr '= null) {
tr[\)/ {
r.close();)
} } catch(IOException e){...}
}
Compliant Solution
try (
FileReader fr = new FileReader(fileName);
BufferedReader br = new BufferedReader(fr)
} return br.readLine();
catch (...) {}
or
try (BufferedReader br = _ _
new BufferedReader(new FileReader(fileName))) { // no need
to name intermediate resources if you don't want to
} return br.readLine();
catch (...) {}
See
] %ElRT, ERR54-J. - Use a try-with-resources statement to safely
andle
closeable resources

SHBFR BT

PlayCommonManager.java 387

Tools.java 43, 87

66

sonar

Driving_Reminder_Assistant

Sonar Report

| PlayActivity.java

1633

|%)”me |Resources should be closed

67

sonar

Driving_Reminder_Assistant Sonar Report

FIEES oS

Connections, streams, files, and other classes that implement the
Closeable interface or its super-interface,

AutoCloseable , needs to be closed after use. Further, that close
call must be made in a finally block otherwise

an exception could keep the call from being made. Preferably,
when class implements AutoCloseable, resource should be
created using

"try-with-resources" pattern and will be closed automatically.
Failure to properly close resources will result in a resource leak
which could bring first the application and then perhaps the box
it's on to

their knees.

Noncompliant Code Example

private void readTheFile() throws IOException {

Path path = Paths.get(this.fileName);

BufferedReader reader = Files.newBufferedReader(path,
this.charset);

/ ..
reader.close(); // Noncompliant

Filéé.lines(“input.txt“).forEach(System.out::println); //
Noncompliant: The stream needs to be closed

private void doSomething() {
OutputStream stream = null;

try {
?:)r (String property : propertyList) {
;}ream = new FileOutputStream("myfile.txt"); // Noncompliant

} }catch (Exception e) {

} finally {
| strgam.close(); // Multiple streams were opened. Only the last is
closed.

}

Compliant Solution

private void readTheFile(String fileName) throws IOException {
Path path = Paths.get(fileName);
try (BufferedReader reader = Files.newBufferedReader(path,
StandardCharsets.UTF_8)) {
reader.readLine();
}//

/] ..
try (Stream<String> input = Files.lines("input.txt")) {
input.forEach(System.out::printin);

}

private void doSomething() {
Out{putStream stream = null;
tr
sxcream = new FileOutputStream("myfile.txt");
fc;; (String property : propertyList) {

68

sonar

Driving_Reminder_Assistant Sonar Report

} }catch (Exception e) {

} finally {
stream.close();

}

Exceptions _ _)
Instances of the following classes are ignored by this rule because
close has no effect:

Java.io.ByteArrayOutputStream
Java.io.ByteArraylnputStream
Java.io.CharArrayReader
Java.io.CharArrayWriter
Java.io.StringReader
Java.io.StringWriter

Java 7 introduced the try-with-resources statement, which
implicitly closes Closeables . All resources opened in a try-with-
resources

statement are ignored by this rule.

trY (BufferedReader br = new BufferedReader(new
Fi//eReader(fiIeName))) {

Latch (.){
\ //...

See

MITRE, CWE-459 - Incomplete Cleanup

CERT, FIO04-). - Release resources when they are no longer
needed

CERT, FIO42-C. - Close files when they are no longer needed

Try With Resources

XAEFR BT
TensorFlowObjectDetectionAPIModel.java 86
EncryptionUtils.java 66
Tools.java 143, 144

|¥)|'|me |Hashinq data is security-sensitive

69

sonar

Driving_Reminder_Assistant Sonar Report

FIEES oS

Hashing data is security-sensitive. It has led in the past to the
following vulnerabilities:

CVE-2018-9233
CVE-2013-5097
CVE-2007-1051

Cryptographic hash functions are used to uniqueIK identify
information without storing their original form. When not done
properly, an attacker can

steal the original information by guessing it (ex: with a rainbow
table), or replace the

original data with another one having the same hash.

This rule flags code that initiates hashing.

Ask Yourself Whether

the hashed value is used in a security context.

the hashing algorithm you are using is known to have
vulnerabilities.

salts are not automatically generated and applied by the
hashing function.

any generated salts are cryptographically weak or not
credential-specific.

You are at risk if you answered yes to the first question and any of
the following ones. ‘ ‘
Recommended Secure Coding Practices

for security related purposes, use only hashing algorithms which
are a

href="https://www.owasp.org/index.php/Password_Storage_Cheat
_Sheet">currently known to be strong . Avoid using algorithms
like MD5 and SHA1
completely in security contexts.
do not define your own hashing- or salt algorithms as they will
most probably have flaws.
do not use algorithms that compute too quickly, like SHA256, as
it must remain beyond modern hardware capabilities to perform
brute force and
dictionary based attacks.
use a hashing algorithm that generate its own salts as part of
the hashing. If you generate your own salts, make sure that a
cryptographically
strong salt algorithm is used, that generated salts are credential-
?]peﬁific, and finally, that the salt is applied correctly before the
ashing.

save both the salt and the hashed value in the relevant database
rﬁcorg; during future validation operations, the salt and hash can
then be
retrieved from the database. The hash is recalculated with the
stored salt and the value being validated, and the result compared
to the stored
hash.
the strength of hashing algorithms often decreases over time as
hardware capabilities increase. Check regularly that the algorithms
ou are
yusing are still considered secure. If needed, rehash your data
using a stronger algorithm.

70

sonar

Driving_Reminder_Assistant Sonar Report

Questionable Code Example

// === MessageDigest ===
import java.security.MessageDigest;
import java.security.Provider;

class A {
void foo(String algorithm, String providerStr, Provider provider)
throws Exception {
MessageDigest.getlnstance(algorithm); // Questionable
MessageDigest.getlnstance(algorithm, providerStr); //
Questionable
MessageDigest.getinstance(algorithm, provider); //
Questionable

}

Regardin% SecretKei/Factory . Any call to
SecretKeyFactory.getlnstance("...") with an argument starting by
"PBKDF2" will be highlighted. See OWASP guidelines, list of a
href="https://docs.oracIe.com/javase/7/docs/technotes/guides/se
curity/StandardNames.html#SecretKeyFactory">standar
algorithms and a
href="https://deveIoEer.android.com/reference/javax/crypto/Secre
tKeyFactory" >algorithms on android .

// === javax.crypto ===

import javax.crypto.spec.PBEKeySpec;
import javax.crypto.SecretKeyFactory;

class A {
void foo(char[] password, byte[] salt, int iterationCount, int
keyLength) throws Exception
// Questionable. Review this, even if it is the way
recommended by OWASP
SecretKeyFactor}/ factory =
SecretKeyFactory.getlnstance("PBKDF2WithHmacSHA512");
PBEKeySpec spec = new PBEKeySpec(password, salt,
iterationCount, keyLength);
factory.generateSecret(spec).getEncoded();

}

Regarding Guava, ong/ the hashing functions which are usually
mrllsgksed for sensitive data will raise an issue, i.e. md5 and
sha* .

// === Guava ===

import com.google.common.hash.Hashing;

class A {
void foo() {
Hashing.md5(); // Questionable
Hashing.shal(); // Questionable
Hashing.sha256(); // Questionable
Hashing.sha384(); // Questionable
Hashing.sha512(); // Questionable

71

sonar

Driving_Reminder_Assistant Sonar

Report

// === org.apache.commons ===))
import org.apache.commons.codec.digest.DigestUtils;

class A %

void foo(String strName, b%/te[] data, String str,
java.io.InputStream stream) throws Exception {
new DigestUtils(strName); // Questionable
new DigestUtils(); // Questionable

DigestUtils.getMd2Digest(); // Questionable
DigestUtils.getMd5Digest(); // Questionable
DigestUtils.getShaDigest(), // Questionable
DigestUtils.getShalDigest(); // Questionable
DigestUtils.getSha256Digest(); // Questionable
DigestUtils.getSha384Digest(); // Questionable
DigestUtils.getSha512Digest(); // Questionable

DigestUtils.md2(data); // Questionable
DigestUtils.md2(stream); // Questionable
DigestUtils.md2(str); // Questionable
DigestUtils.md2Hex(data); // Questionable
DigestUtils.md2Hex(stream); // Questionable
DigestUtils.md2Hex(str); // Questionable

DigestUtils.md5(data); // Questionable
DigestUtils.md5(stream); // Questionable
DigestUtils.md5(str); // Questionable
DigestUtils.md5Hex(data); // Questionable
DigestUtils.md5Hex(stream); // Questionable
DigestUtils.md5Hex(str); // Questionable

DigestUtils.sha(data); // Questionable
DigestUtils.sha(stream); // Questionable
DigestUtils.sha(str); // Questionable
DigestUtils.shaHex(data); // Questionable
DigestUtils.shaHex(stream); // Questionable
DigestUtils.shaHex(str); // Questionable

DigestUtils.shal(data); // Questionable
DigestUtils.shal(stream); // Questionable
DigestUtils.shal(str); // Questionable
DigestUtils.shalHex(data); // Questionable
DigestUtils.shalHex(stream); // Questionable
DigestUtils.shalHex(str); // Questionable

DigestUtils.sha256(data); // Questionable
DigestUtils.sha256(stream); // Questionable
DigestUtils.sha256(str); // Questionable
DigestUtils.sha256Hex(data); // Questionable
DigestUtils.sha256Hex(stream); // Questionable
DigestUtils.sha256Hex(str); // Questionable

DigestUtils.sha384(data); // Questionable
DigestUtils.sha384(stream); // Questionable
DigestUtils.sha384(str); // Questionable
DigestUtils.sha384Hex(data); // Questionable
DigestUtils.sha384Hex(stream); // Questionable
DigestUtils.sha384Hex(str); // Questionable

72

sonar

Driving_Reminder_Assistant Sonar Report

DigestUtils.sha512(data); // Questionable
DigestUtils.sha512(stream); // Questionable
DigestUtils.sha512(str); // Questionable
DigestUtils.sha512Hex(data); // Questionable
DigestUtils.sha512Hex(stream); // Questionable
DigestUtils.sha512Hex(str); // Questionable

A& FR EHT
EncryptionUtils.java 35, 68
StrinqUtils.java 77

R |Methods returns should not be invariant
MR When a method is designed to return an invariant value, it may be
poor design, but it shouldn't adversely affect the outcome of your
E'rogram. . o
owever, when it happens on all paths through the logic, it is
surely a bug.
This rule raises an issue when a method contains several return
statements that all return the same value.
Noncompliant Code Example
int foo(int a) {
intb =12;
if (@a==1){
\ return b;
return b; // Noncompliant
SHEFR ERAT
AddCameraActivity.java 548
AudioPlayer.java 26
CustomAudioRecorder.java 90

|¥)”me |Mutab|e fields should not be "public static"

73

sonar

Driving_Reminder_Assistant Sonar Report

A There is no good reason to have a mutable object as the public
(by default), static member of an interface . o
Such variables should be moved into classes and their visibility
lowered.
Similarly, mutable static members of classes and enumerations
which are accessed directly, rather than through getters and
setters,
should be protected to the degree possible. That can be done by
reducing visibility or makin? the field final if appropriate.
Note that making a mutable field, such as an array, final will
keep the variable from being reassigned, but doing so has no
effect on
the mutability of the internal state of the array (i.e. it doesn't
accomplish the goal).) _ _
This rule raises issues for public static array, Collection, Date,
and awt.Point members.
Noncompliant Code Example
public interface MyInterface {
public static String [] strings; // Noncompliant
public class A {
I\Fublic static String [] stringsl = {"first","second"}; //
oncompliant
ublic static String [] strings2 = {"first","second"}; //
oncompliant . _ _
I\Joubllc static List<String> strings3 = new ArrayList<>(); //
oncompliant
/] ...
}
See
MITRE, CWE-582 - Array Declared Public, Final, and Static
Ob'MITRE' CWE-607 - Public Static Final Field References Mutable
ject
CERT, OBJO1-J. - Limit accessibility of fields _
CERT, OBJ13-J. - Ensure that references to mutable objects are
not exposed
AR FR ERAT
SensorDoorData.java 17
SensorTimeUtil.java 15
PlayActivity.java 1920

|%Ul.,mu |Boo|ean

expressions should not be gratuitous

74

sonar

Driving_Reminder_Assistant Sonar Report

FNFEIA If a boolean expression doesn't change the evaluation of the
condition, then it is entirely unnecessary, and can be removed. If it
Is gratuitous .)
because it does not match the pr%grammer's intent, then it's a bug
and the exFression should be fixed.
Noncompliant Code Example
a = true;)
if (a) { // Noncompliant
} doSomething();
if (b && a) { // Noncompliant; "a" is always "true"
} doSomething();
if (cy la) { // Noncompliant; "la" is always "false"
} doSomething();
Compliant Solution
a = true;
if (foo(a)) {
} doSomething();
if (b) {
} doSomething();
if (c) { ,
} doSomething();
See
~ MISRA C:2004, 13.7 - Boolean operations whose results are
invariant shall not be permitted.
MISRA C:2012, 14.3 - Controlling expressions shall not be
invariant
MITRE, CWE-571 - Expression is Always True
MITRE, CWE-570 - Expression is Always False
MITRE, CWE-489 - Leftover Debug Code
CERT, MSC12-C. - Detect and remove code that has no effect
or is never
executed
SHEFR ERAT
Tools.java 63, 96
PlayActivity.java 2051

|¥)|'|me |Strinqs and Boxed types should be compared using "equals()"

sonar

Driving_Reminder_Assistant Sonar Report

FNFEIA It's almost always a mistake to compare two instances of
java.lang.String or boxed t}/pes like java.lang.Integer using
reference equality == or !=, because it is not comparing actual
value but locations in memory.

Noncompliant Code Example
String firstName = getFirstName(); // String overrides equals
String lastName = getLastName();
if (firstName == lastName) { ... }; // Non-compliant; false even if
the strings have the same value
Compliant Solution
String firstName = getFirstName();
String lastName = getLastName();
i}f (firstName != null && firstName.equals(lastName)) { ...
See

MITRE, CWE-595 - Comparison of Object References Instead of
Object Contents

MITRE, CWE-597 - Use of Wrong Operator in String
Comparison)

CERT, EXP03-J. - Do not use the equality operators when
comparing values of
boxed primitives

CERT, EXP50-J. - Do not confuse abstract object equality with
reference
equality

MHFTR BT

SCameraSetPlanVideoTiming.java 84

SCameraSetPushVideoTiming.java 77

SCameraSetSDTiming.java 79

|fmmu |Nested code blocks should not be used

76

sonar

Driving_Reminder_Assistant Sonar Report

AR A

MHATR

Nested code blocks can be used to create a new scope and
restrict the visibility of the variables defined inside it. Using this
feature in a method

typically indicates that the method has too many responsibilities,
and should be refactored into smaller methods.

Noncompliant Code Example

public void evaluate(int operator) {
SV\aitch*}operator) {

case ADD: { // Noncompliant - nested code
block '{" ... "}'
int a = stack.pop();
intb = stack.poB();
int result = a + b;
stack.push(result);
} break;
/*.L*
}
}

Compliant Solution

public void evaluate(int operator) {
SV\iitch*(operator) {

case ADD: // Compliant
evaluateAdd();
break;
/* .
}
}

private void evaluateAdd() {
int a = stack.pop();
intb = stack.pog();
int result = a + b;
stack.push(result);

BT

PlayActivity.java

451, 577

|%)|'|.,mu |Class names should comply with a naming convention

77

sonar

Driving_Reminder_Assistant

Sonar Report

FRNFEIA Shared coding conventions allow teams to collaborate effectively.
This rule allows to check that all class names match a provided
regular
expression.

Noncompliant Code Example

With default provided regular expression A[A-Z][a-zA-Z0-9]*$:
class my_class {...}

Compliant Solution

class MyClass {...}

MAEEFR BT

BindSensorListAdapter.java 170

SensorListAdapter.java 30

AR |Identical expressions should not be used on both sides of a binary
operator

78

sonar

Driving_Reminder_Assistant Sonar Report

A Using the same value on either side of a binary operator is almost
always a mistake. In the case of logical operators, it is either a
copy/paste o
error and therefore a bug, or it is simply wasted code, and should
be simplified. In the case of bitwise operators and most binary
mathematical
operators, having the same value on both sides of an operator
yields predictable results, and should be simplified.

Noncompliant Code Example
if (a ==a) {//always true
\ doZ();
if (a!=a){//always false
doY();
if (a == b && a == b) { // if the first one is true, the
second one is too
doX();
if (a==Db]|la==Db)/{//if the first one is true, the second one is
too
doW();
}
intj=5/5;//always 1
intk =5 -5; //always 0
c.equals(c); //always true
Exceptions
This rule ignores *, +,and =.
The specific case of testin%a floating point value against itself is
a valid test for NaN and is therefore ignored.
Similarly, left-shifting 1 onto 1 is common in the construction of
bit masks, and is ignored.
float f;
if(f = f) { //test for NaN value
System.out.printin("f is NaN");
inti=1<<1;//Compliant
intj = a << a; // Noncompliant
See
CERT, MSC12-C. - Detect and remove code that has no effect
or is never
executed
S1656 - Implements a checkon =.

SHEFR ERAT

MessageActivity.java 64

BridgeService.java 1240

79

sonar

Driving_Reminder_Assistant

Sonar

Repor t

|¥W,J|'JU |Switch cases should end with an unconditional "break" statement

80

sonar

Driving_Reminder_Assistant Sonar Report

FIEES oS

When the execution is not explicitly terminated at the end of a
switch case, it continues to execute the statements of the
following case. While

this is sometimes intentional, it often is a mistake which leads to
unexpected behavior.

Noncompliant Code Example

switch (myVariable) {
case 1.
foo();
break;
case 2: // Both 'doSomething()' and 'doSomethingElse()’ will be
executed. Is it on purpose ?
doSomething();
default:
doSomethingElse();
break;

}

Compliant Solution

switch (myVariable) {

case 1:
foo();
break;

case 2:
doSomething();
break;

default;
doSomethingElse();
break;

}

Exceptions] _
This rule is relaxed in the following cases:

switch (myVariable) {

case 0: // Empty case used to specify the same
behavior for a group of cases.

case 1:
doSomething();
break;

case 2: // Use of return statement
return;

case 3: // Use of throw statement
throw new IllegalStateException();

case 4: // Use of continue statement
continue;

default: // For the last case, use of break

statement is optional
} doSomethingElse();

See

MISRA C:2004, 15.0 - The MISRA C switch syntax shall be used.

MISRA C:2004, 15.2 - An unconditional break statement shall
terminate every non-empty switch clause

MISRA C++:2008, 6-4-3 - A switch statement shall be a well-
formed switch statement.

MISRA C++:2008, 6-4-5 - An unconditional throw or break

81

sonar

Driving_Reminder_Assistant Sonar Report

statement shall terminate every non-empty switch-clause
MISRA C:2012, 16.1 - All switch statements shall be well-formed
MISRA C:2012, 16.3 - An unconditional break statement shall
terminate every switch-clause
MITRE, CWE-484 - Omitted Break Statement in Switch
CERT, MSC17-C. - Finish every set of statements associated
with a case
label with a break statement
CERT, MSC52-J. - Finish every set of statements associated with
a case
label with a break statement

AR FR BT
PlayActivity.java 1486
SettingActivity.java 95

|¥)|'|me |Credentia|s should not be hard-coded

82

sonar

Driving_Reminder_Assistant Sonar Report

A Because it is easy to extract strings from a compiled application,
credentials should never be hard-coded. Do so, and they're almost
guaranteed to o .
end up in the hands of an attacker. This is particularly true for
applications that are distributed.

redentials should be stored outside of the code in a strongly-
protected encrypted configuration file or database.
It's recommended to customize the configuration of this rule with
additional credential words such as "oauthToken", "secret", ...
Noncompliant Code Example
Connection conn = null;
try {
conn =
DriverManager.getConnection("jdbc:mysql://localhost/test?" +
"user=steve&password=blue"); // Noncompliant
String uname = "steve’;
String password = "blue”;
conn =
DriverManager.getConnection("jdbc:mysgl://localhost/test?" +
"user="+ uname + "&password=" + password); //
Noncompliant
java.net.PasswordAuthentication pa = new
java.net.PasswordAuthentication("userName”",
"1234".toCharArray()); // Noncompliant
Compliant Solution
Connection conn = null;
tr%/ {
tring uname = getEncryptedUser();
String password = getEncryptedPass();
conn =
DriverManager.getConnection("jdbc:mysgl://localhost/test?" +
"user="+ uname + "&password=" + password);
See
OWASP Top 10 2017 Category A2 - Broken Authentication
MITRE, CWE-798 - Use of Hard-coded Credentials
MITRE, CWE-259 - Use of Hard-coded Password
CERT, MSCO03-J. - Never hard code sensitive information
SANS Top 25 - Porous Defenses
Derived from FindSecBugs rule Hard Coded Password

N4ETR BT

ContentCommon.java 47

DatabaseUtil.java 39

|%)”me |"throws" declarations should not be superfluous

sonar

Driving_Reminder_Assistant Sonar Report

FIEES oS

An exception in a throws declaration in Java is superfluous if it is:

listed multiple times

a subclass of another listed exception

a RuntimeException, or one of its descendants

completely unnecessary because the declared exception type
cannot actually be thrown

Noncompliant Code Example

void foo() throws MyException, MyException {} // Noncompliant;
should be listed once

void bar() throws Throwable, Exception {} // Noncompliant;
Exception is a subclass of Throwable

void baz() throws RuntimeException {} // Noncompliant;
RuntimeException can always be thrown

Compliant Solution

void foo() throws MyException {}
void bar() throws Throwable {}
void baz() {}

Exceptions . . .
The rule will not raise any issue for exceptions that cannot be
thrown from the method body:

in overriding and implementation methods

in interface default methods

in non-private methods that only throw , have empty bodies, or
a single return statement .

in overridable methods (non-final, or not member of a final
class, non-static, non-private), if the exception is documented with
a proper

javadoc.

class A extends B {
@Override
void doSomething() throws IOException {
compute(a);

public void foo() throws IOException {}

protected void bar() throws IOException {
throw new UnsupportedOperationException("This method
should be implemented in subclasses");

Object foobar(String s) throws IOException {
return null;

**

* @throws IOException Overriding classes may throw this
exception if they print values into a file

protected void print() throws IOException { // no issue, method is
overridable and the exception has proper javadoc
System.out.printin("foo");

84

sonar

Driving_Reminder_Assistant

Sonar

Repor t

I ——

A& FR EHT
DatabaseUtil.java 171, 242

status code

A Return values should not be ignored when they contain the operation

85

sonar

Driving_Reminder_Assistant

Sonar Report

FIEES oS

MHEFR

When the return value of a function call contain the operation
status code, this value should be tested to make sure the

operation completed
successfully.

This rule raises an issue when the return values of the following

are ignored:

java.io.File operations that return a status code (except mkdirs

Iterator.hasNext()
Enumeration.hasMoreElements()
Lock.tryLock()

non-void Condition.await* methods

CountDownLatch.await(long, TimeUnit)

Semaphore.tryAcquire
BlockingQueue : offer, remove

Noncompliant Code Example

public void doSomething(File file, Lock lock) {

we.delete(); // Noncompliant
} Ioc"k.tryLock(); // Noncompliant

Compliant Solution

public void doSomething(File file, Lock lock) {

if (Mlock.tryLock()) {
// lock failed; take appropriate action

i}f (file.delete()) {

// file delete tailed; take appropriate action

}

See

MISRA C:2004, 16.10 - If a function returns error information,
then that error information shall be tested

MISRA C++:2008, 0-1-7 - The value returned by a function
having a non-void return type that is not an overloaded operator

shall always be used.

MISRA C:2012, Dir. 4.7 - If a function returns error information,
then that error information shall be tested
MISRA C:2012, 17.7 - The value returned by a function having

non-void return ’g/pe shall be used
CERT, ERR33-C.

Conditions

- Detect and handle standard library errors
CERT, POS54-C. - Detect and handle POSIX library errors
CERT, EXPOO-J. - Do not ignore values returned by methods
CERT, EXP12-C. - Do not ignore values returned by functions
CERT, FIO02-). - Detect and handle file-related errors

MITRE, CWE-754 - Improper Check for Unusual Exceptional

EAUT

ShowLocPicGridViewAdapter.java

173

VideoFramePool.java

82

86

sonar

Driving_Reminder_Assistant Sonar Report

I |"switch“ statements should have at least 3 "case" clauses

AU fIA

switch statements are useful when there are many different
cases depending on the value of the same expression.

For just one or two cases however, the code will be more readable
with™ if statements.

Noncompliant Code Example

switch (variable) {
case 0:
doSomething();
break;
default:
doSomethingElse();
break;

}

Compliant Solution

if (variable == 0) {
doSomething();

} else {

} doSomethingElse();

See

MISRA C:2012, 16.6 - Every switch statement shall have at least
two switch-clauses

MIHBER ST
SettingAlarmActivity.java 289
ShowLocPicGridViewAdapter.java 160

AR |Constructors should not be used to instantiate "String", "BigInteger”,
"BigDecimal" and primitive-wrapper classes

87

sonar

Driving_Reminder_Assistant Sonar Report

A Constructors for String, Biglnteger, BigDecimal and the
objects used to wrap primitives should never be
used. Doing so is less clear and uses more memory than simply
]thsing the desired value in the case of strings, and using valueOf
or
everything else.
Noncompliant Code Example
String empty = new String(); // Noncompliant; yields essentially "",
so Just use that.))
String nonempty = new String("Hello world"); // Noncompliant
Double myDouble = new Double(1.1); // Noncompliant; use
valueOf
Integer integer = new Integer(1); // Noncompliant
Boolean bool = new Boolean(true); // Noncompliant
BigInteger bigIntegerl = new Biglnteger("3"); // Noncompliant
BigInteger biglnteger2 = new
BigInteger("9223372036854775807"); // Noncompliant
BigInteger biglnteger3 = new
BigInteger("111222333444555666777888999"); // Compliant,
greater than Long.MAX_VALUE
Compliant Solution
String empty = "";
String nonempty = "Hello world";
Double myDouble = Double.valueOf(1.1);
Integer integer = Integer.valueOf(1);
Boolean bool = Boolean.valueOf(true);
BigInteger biglntegerl = BigIlnteger.valueOf(3);
BigInteger bi?lnte er2 =
BigInteger.valueOf(9223372036854775807L);
BigInteger bigInteger3 = new
BigInteger("111222333444555666777888999");
Exceptions
BigDecimal constructor with double argument is ignored as
using valueOf instead might change resulting
value. See S2111.
MHFTR BT
ShowLocPicGridViewAdapter.java 290

|f)ﬂbmu |Usinq regular expressions is security-sensitive

88

sonar

Driving_Reminder_Assistant Sonar Report

FIEES oS

Using regular expressions is security-sensitive. It has led in the
past to the following vulnerabilities:

CVE-2017-16021
CVE-2018-13863

Evaluating regular expressions against input strings is potentially
an extremely CPU-intensive task. Specially crafted regular
expressions such as
(a+)+s will take several seconds to evaluate the input string
aaaaaaaaaaaaaaaaaaaaaaaaaaaaabs . The problem is that with
every additional a character added to the input, the time required
to evaluate the regex doubles. However, the equivalent reqular
expression, a+s (without groupin%) is efficiently evaluated in
milliseconds and scales linearly with the input size.

Evaluating such regular expressions opens the door to a
href="https://www.owasp.org/index.php/Regular_expression_Deni
al_of_Service_-_ReDoS">Regular expression Denial of Service
(ReDoS) attacks. In the
context of a web application, attackers can force the web server to
spend all of its resources evaluating regular expressions thereby
making the
service inaccessible to genuine users.

This rule flags any execution of a hardcoded regular expression
which has at least 3 characters and at least two instances of any of
the foIIowing
characters: *+{.

Example: (a+)*

Ask Yourself Whether

the executed regular expression is sensitive and a user can
provide a string which will be analyzed by this regular expression.

your regular expression engine performance decrease with
specially crafted inputs and regular expressions.

You may be at risk if you answered yes to any of those questions.

Recommended Secure Coding Practices
Check whether your regular expression engLine (the algorithm
executing your regular expression) has any known vulnerabilities.
Search for
vulnerability reports mentioning the one engine you're are using.

Use if possible a library which is not vulnerable to Redos Attacks
such as Google Re2 .

Remember also that a ReDos attack is possible if a user-provided
regular expression is executed. This rule won't detect this kind of
Injection.

ensitive Code Example

import java.util.regex.Pattern;

class BasePattern { .
String regex = "(a+)+b"; // a regular expression
String input; // a user input

void foo(CharSequence htmlString) {
input.matches(regex); // Sensitive
Pattern.compile(regex); // Sensitive
Pattern.compile(regex, Pattern.CASE_INSENSITIVE); // Sensitive

String replacement = "test”, -
input.replaceAll(regex, replacement); // Sensitive

89

sonar

Driving_Reminder_Assistant Sonar Report

input.replaceFirst(regex, replacement); // Sensitive

if (IPattern.matches(".*<script>(a+)+b", htmlString)) { //
Sensitive

}
}

This also applies for bean validation, where regexp can be
specified:

import java.io.Serializable; .

import javax.validation.constraints.Pattern;
import javax.validation.constraints.Email;
import org.hibernate.validator.constraints.URL;

class BeansRegex implements Serializable {
@Pattern(regexp=".+@(a+)+b") // Sensitive
private String email;

@Email(regexp=".+@(a+)+b") // Sensitive
private String email2;

@URL(regexp="(a+)+b.com") // Sensitive
p/rivate String url;

}

Exceptions

Calls to String.split(regex) and String.split(regex, limit) will not

raise an exceﬁtion despite their use of a regular _

expression. These methods are used most of the time to split on

sémple regular expressions which don't create any vulnerabilities.
ee

OWASP Top 10 2017 Category Al - Injection
MITRE, CWE-624 - Executable Regular Expression Error

OWASP Regular expression Denial of Service - ReDoS

XIHEFR ERAT
VuidUtils.java 16

|¥)|'|me |Doub|e—checked locking should not be used

90

sonar

Driving_Reminder_Assistant Sonar Report

FIEES oS

Double-checked locking is the practice of checking a lazy-
ibr}itiakli_zed object's state both before and after a synchronized
ock is
entered to determine whether or not to initialize the object.
It does not work reliably in a platform-independent manner
without additional synchronization for mutable instances of
anything other than
float or int. Using double-checked locking for the lazy
initialization of any other type of primitive or mutable object
risks a second thread using an uninitialized or partially initialized
member while the first thread is still creating it, and crashing the
program.
There are multiple ways to fix this. The simplest one is to simpIY
not use double checked locking at all, and synchronize the whole
method instead.
With early versions of the JVM, synchronizing the whole method
was ene'ralla/ advised against for performance reasons. But
synchronize
performance has improved a lot in newer JVMs, so this is now a
preferred solution. It you prefer to avoid using synchronized
altogether,
ou can use an inner static class to hold the reference instead.
nner static classes are guaranteed to load lazily.
Noncompliant Code Example

@NotThreadSafe .
public class DoubleCheckedLocking {
private static Resource resource;

public static Resource getlnstance() {
if (resource == null) {
synchronized (DoubleCheckedLocking.class) {
if (resource == null)
resource = new Resource();

}

return resource;

static class Resource {

}
}

Compliant Solution

@ThreadSafe o
public class SafeLazylnitialization {
private static Resource resource;

public synchronized static Resource getlnstance() {
if (resource == null)
resource = new Resource();
return resource;

}

static class Resource {

}
}

With inner static holder:

91

sonar

Driving_Reminder_Assistant Sonar Report

@ThreadSafe
public class ResourceFactory {
private static class ResourceHolder {
public static Resource resource = new Resource(); // This will
be lazily initialised

}

public static Resource getResource() {
return ResourceFactory.ResourceHolder.resource;

}

static class Resource {

}
}

Using "volatile™:

class ResourceFactory {
private volatile Resource resource;

public Resource getResource() {
Resource localResource = resource;
if (localResource == null) {
synchronized (this) {
ocalResource = resource;
if (localResource == null) {
resource = localResource = new Resource();
}
}

return localResource;

}

static class Resource {

}
}

See

The "Double-Checked Locking is Broken" Declaration
CERT, LCK10-J. - Use a correct form of the double-checked
locking idiom

MITRE, CWE-609 - Double-checked lockin
JLS 12.4 - Initialization of Classes and Interfaces
Wikipedia: Double-checked locking

AR FR BT
VcmApi.java 16

|¥)|'|me |A conditionally executed single line should be denoted by indentation

92

sonar

Driving_Reminder_Assistant Sonar Report

AR A

MR

In the absence of enclosing curly braces, the line immediately
after a conditional is the one that is conditionally executed. By
both convention

and good practice, such lines are indented. In the absence of both
curly braces and indentation the intent of the original programmer
is entirely

unclear and perhaps not actually what is executed. Additionally,
such code is highly likely to be confusing to maintainers.
Noncompliant Code Example

if (condition) // Noncompliant
doTheThing();

doTheOtherThing();
somethingElseEntirely();

foo();
Compliant Solution

if (condition)
doTheThing();

doTheOtherThing();
somethingElseEntirely();

foo();

Log.java

AW [Two branches in a conditional structure should not have exactly the same
implementation

93

sonar

Driving_Reminder_Assistant Sonar Report

FIEES oS

Having two cases in a switch statement or two branches in an
if chain with the same implementation is at

best duplicate code, and at worst a coding error. If the same logic
is truly needed for both instances, then in an if chain they should
behcombined, or for a switch, one should fall through to the
other.

Noncompliant Code Example

switch (i) {

case 1:
doFirstThing();
doSomething();
break;

case 2:
doSomethingDifferent();
break;

case 3: // Noncompliant; duplicates case 1's implementation
doFirstThing();
doSomething();
break;

default:
doTheRest();

if (@ >= 0 && a < 10) {
doFirstThing();
doTheThing();

}
else if (a >= 10 && a < 20) {
doTheOtherThing();

}
else if (a >= 20 && a < 50) {
doFirstThing();
doTheThing(); // Noncompliant; duplicates first condition

else {
} doTheRest();

Exceptions

Blocks in an if chain that contain a single line of code are
ignored, as are blocks in a switch statement that contain a
single line of code with or without a following break .

ifa==1) {
doSomething(); //no issue, usually this is done on purpose to
increase the readability
}elseif (a == 2) {
doSomethingElse();
} else {
\ doSomething();

But this exception does not apply to if chains without else -s, or
to switch -es without default clauses when

all branches have the same single line of code. In case of if chains
with else -s, or of switch -es with default

clauses, rule S3923 raises a bug.

ifa==1){
doSomething(); //Noncompliant, this might have been done on

94

sonar

Driving_Reminder_Assistant

Sonar

Repor t

urpose but probably not
relsel f(a==2){
\ doSomethlng()

AR FR AT
AddCameraActivity.java 748

|%)|'|me |Usinq pseudorandom number generators (PRNGSs) is security-sensitive

95

sonar

Driving_Reminder_Assistant Sonar Report

FIEES oS

Using pseudorandom number(?g—_‘nerators (PRNGs) is security-
sensitive. For example, it has led in the past to the following
vulnerabilities:

CVE-2013-6386
CVE-2006-3419
CVE-2008-4102

When software generates predictable values in a context
requiring unpredictability, it may be possible for an attacker to
guess the next value that

will be generated, and use this guess to impersonate another user
or access sensitive information.

As the java.uti.LRandom class relies on a pseudorandom number
generator, this class and relating java.lang.Math.random()
method should not be used for security-critical applications or for
protecting sensitive data. In such context, the
java.security.SecureRandom class which relies on a
cryptographically strong random number generator (RNG) should
be used in place.

Ask Yourself Whether

the code using the generated value requires it to be
unpredictable. It is the case for all encryption mechanisms or when
a secret value, such

as a password, is hashed.

the function you use generates a value which can be predicted
(pseudo-random).

the generated value is used multiple times.

an attacker can access the generated value.

You are at risk if you answered yes to the first question and any of
the following ones. ‘ ‘
Recommended Secure Coding Practices

Use a cryptographically strong random number generator (RNG)
like "java.security.SecureRandom" in place of this PRNG.

Use the generated random values only once.

You should not expose the generated random value. If you have
to store it, make sure that the database or file is secure.

Sensitive Code Example
Random random = new Random(); // Questionable use of Random
byte bytes[] = new byte[20]; _ _ ‘
random.nextBytes(bytes); // Check if bytes is used for hashing,
encryption, etc...
Compliant Solution
SecureRandom random = new SecureRandom(); // Compliant for
security-sensitive use cases
byte bytes[] = new byte[20];
random.nextBytes(bytes);
See

OWASP Top 10 2017 Category A3 - Sensitive Data Exposure

MITRE, CWE-338 - Use of Cryptographically Weak Pseudo-
Random Number Generator

96

sonar

Driving_Reminder_Assistant

Sonar

Repor t

(PRNG)

MITRE, CWE-330 - Use of Insufficiently Random Values
MITRE, CWE-326 - Inadequate Encryption Strength
CERT, MSCO02-J. - Generate strong random numbers
CERT, MSC30-C. - Do not use the rand() function for

generating pseudorandom

numbers
CERT, MSC50-CPP. - Do not use std::rand() for generating
pseudorandom
numbers
Derived from FindSecBugs rule Predictable Pseudo Random
Number
Generator
& =T BT
StringUtils.java 26

|¥)|'|me |Loops with at most one iteration should be refactored

97

sonar

Driving_Reminder_Assistant Sonar Report

FNFEIA A loop with at most one iteration is equivalent to the use of an if
statement to conditionally execute one piece of code. No
developer _ o
expects to find such a use of a loop statement. If the initial
intention of the author was really to conditionally execute one
piece of code, an
if statement should be used instead.

At worst that was not the initial intention of the author and so the
body of the loop should be fixed to use the nested return,
break or throw statements in a more appropriate way.
Noncompliant Code Example
for (inti =0;i < 10; i++) { // noncompliant, loop only executes
once
Brintf("i is %d", i);
reak;
}
for (inti=0;i<10;i++){// noncompliant, loop only executes
once
if(i == x) {
break;
} else {
printf("i is %d", i);
return;
}
}
Compliant Solution
for (inti=0;i< 10; i++) {
} printf("i is %d", i);
for (inti=0;i < 10;i++) {
if(i == x) {
break;
} else {
} printf("i is %d", i);
}
SHEFR BT
MyStringUtils.java 25

|¥)|'|me |Boo|ean literals should not be redundant

98

sona r Driving_Reminder_Assistant Sonar Report

A Redundant Boolean literals should be removed from expressions
to improve readability.
Noncompliant Code Example

if (booleanMethod() == true) { /* ... */ }

if (booleanMethod() == false) { /* ... */}
if (booleanMethod() || false) { /* ... */ }
doSomething(!false);
doSomething(booleanMethod() == true);

booleanVariable = booleanMethod() ? true : false;
booleanVariable = booleanMethod() ? true : exp;
booleanVariable = booleanMethod() ? false : exp;
booleanVariable = booleanMethod() ? exp : true;
booleanVariable = booleanMethod() ? exp : false;

Compliant Solution

if (booleanMethod()) { /* ... */}

if !lbooleanMethod()) {/* ... */}
if (booleanMethod()) { /* ... */}
doSomething(true);
doSomething(booleanMethod());

booleanVariable = booleanMethod();

booleanVariable = booleanMethod() || exp;
booleanVariable = !booleanMethod() && exp;
booleanVariable = !booleanMethod() || exp;
booleanVariable = booleanMethod() && exp;

AR FR BT
AddCameraActivity.java 82

|¥)|'|me |NuII pointers should not be dereferenced

sonar

Driving_Reminder_Assistant Sonar Report

FIEES oS

A reference to null should never be dereferenced/accessed.
Doing so will cause a NullPointerException to be thrown. At
best, such an exception will cause abrupt program termination. At
worst, it could expose debugging information that would be useful
to an attacker, or

it could allow an attacker to bypass security measures.

Note that when they are present, this rule takes advantage of
@CheckForNull and @Nonnull annotations defined in a
href="https://jcp.org/en/jsr/detail?id=305">JSR-305 to
understand which values are and are not nullable except when
@Nonnull is used

on the parameter to equals, which by contract should always
work with null.

Noncompliant Code Example

@CheckForNull
String getName(){...}

public boolean isNameEmpty() {
return getName().Iength(?== 0; // Noncompliant; the result of
getName() could be null, but isn't null-checked

Connection conn = null;

Statement stmt = null;

try{
conn = DriverManager.getConnection(DB_URL,USER,PASS);
;}mt = conn.createStatement();

}catch(Exception e){

e.printStackTrace();
Hinally{

stmt.close(); // Noncompliant; stmt could be null if an exception
was thrown in the try{} block

conn.close(); // Noncompliant; conn could be null if an exception
was thrown

}

private void merge(@Nonnull Color firstColor, @Nonnull Color
secondColor){...}

public void append(@CheckForNull Color color) {

merge(currentColor, color); // Noncompliant; color should be
null-checked because merge(...) doesn't accept nullable
Farameters

void paint(Color color) {
if(color == null) {
System.out.printIn("Unable to apply color " + color.toString());
// Noncompliant; NullPointerException will be thrown
return;

}
=

See

100

sonar

Driving_Reminder_Assistant

Sonar

Repor t

req

MITRE, CWE-476 - NULL Pointer Dereference
CERT, EXP34-C. - Do not dereference null pointers

CERT, EXP0O1-J. - Do not use a null in a case where an object is

uired

MIHBER ST
EncryptionUtils.java 87

|¥W,J|'JU |Empty arrays and collections should be returned instead of null

101

sonar

Driving_Reminder_Assistant Sonar Report

AR A

MR

Returning null instead of an actual array or collection forces
callers of the method to explicitly test for nullity, making them
more

complex and less readable. _

Moreover, in many cases, null is used as a synonym for empty.
Noncompliant Code Example

public static List<Result> getResults() {
return null; // Noncompliant

public static Result[] getResults() {
} return null; // Noncompliant

public static void main(String[] args) {
Result[] results = getResults();

Nhlf_)l(zresults I= null) { // Nullity test required to prevent

for (Result result: results) {
/¥
}
}
}

Compliant Solution

public static List<Result> EetResuIts() {
} return Collections.emptyList(); // Compliant

public static Result[] getResults() {
return new Result[O?;

public static void main(String[] args) {
fC}[; (RE;uIt result: getResults()) {
}

}

See

CERT, MSC19-C. - For functions that return an array, prefer
returning an
emEEgl array over a null value o
; C ?I- MET55-J. - Return an empty array or collection instead
ofanu
value for methods that return an array or collection

BT

SensorDoorData.java 88

|¥)|'|me |Interface names should comply with a naming convention

102

so n a r Driving_Reminder_Assistant Sonar Report
NG Sharing some naming conventions is a key point to make it

Compliant Solution

public interface Mylnterface {...}

possible for a team to efficiently collaborate. This rule allows to
check that all
interface names match a provided regular expression.
Noncompliant Code Example
With the default regular expression A[A-Z][a-zA-Z0-9]*$:

public interface mylnterface {...} // Noncompliant

MIHBER ST
BridgeService.java 1021

|fmlﬂﬂ |Broadcastinq intents is security-sensitive

103

sonar

Driving_Reminder_Assistant Sonar Report

FIEES oS

In Android applications, broadcasting intents is security-sensitive.
For example, it has led in the past to the following vulnerability:

CVE-2018-9489

By default, broadcasted intents are visible to every application,
exposing all sensitive information they contain.
This rule raises an issue when an intent is broadcasted without
specifying any "receiver permission”.

sk Yourself Whether

The intent contains sensitive information.
Intent reception is not restricted.

You are at risk if you answered yes to all those questions.
Recommended Secure Coding Practices

Restrict the access to broadcasted intents. See a
href="https://developer.android.com/guide/components/broadca
sts.html#restricting_broadcasts_with_permissions”>Android
documentation for more

information.

Sensitive Code Example

import android.content.BroadcastReceiver;
import android.content.Context;

import android.content.Intent;

import android.os.Build;

import android.os.Bundle;

import android.os.Handler;

import android.os.UserHandle;

import android.support.annotation.RequiresApi;

public class MylntentBroadcast {
@RequiresApi(api = Build.VERSION_CODES.JELLY_BEAN_MR1)
public void broadcast(Intent intent, Context context, UserHandle
user,
BroadcastReceiver resultReceiver, Handler
scheduler, int initialCode,
String initialData, Bundle initialExtras,
String broadcastPermission) {
context.sendBroadcast(intent); // Sensitive
context.sendBroadcastAsUser(intent, user); // Sensitive

// Broadcasting intent with "null" for receiverPermission

context.sendBroadcast(intent, null); // Sensitive

context.sendBroadcastAsUser(intent, user, null); // Sensitive

context.sendOrderedBroadcast(intent, null); // Sensitive

context.sendOrderedBroadcastAsUser(intent, user, null,
resultReceiver,

_ scheduler, initialCode, initialData, initialExtras); //
Sensitive

context.sendBroadcast(intent, broadcastPermission); // Ok
context.sendBroadcastAsUser(intent, user,
broadcastPermission); // Ok
p Okcontext.sendOrdered Broadcast(intent, broadcastPermission);
context.sendOrderedBroadcastAsUser(intent,
user,broadcastPermission, resultReceiver,
} scheduler, initialCode, initialData, initialExtras); // Ok

104

sonar

Driving_Reminder_Assistant Sonar Report

}

See
OWASP Top 10 2017 Category A3 - Sensitive Data Exposure

MITRE, CWE-927 - Use of Implicit Intent for Sensitive
Communication
Android documentation -
Broadcast Overview - Security considerations and best practices

SCHEHR AT
Tools.java 62

F |Parsinq should be used to convert "Strings" to primitives
MR Rather than creating a boxed primitive from a String to extract
the primitive value, use the relevant parse method
instead. It will be clearer and more efficient.
Noncompliant Code Example
String myNum = "12.2";
float f = (new Float(myNum)).floatValue(); // Noncompliant;
creates & discards a Float
Compliant Solution
String myNum = "12.2"
float f = Float.parseFloat(myNum);
SRR AT
Tools.java 154

F |"toStrinq()" should never be called on a String object

MR Invoking a method des(ijgned to return a strin% representation of
an object which is already a string is a waste of keystrokes. This
redundant
construction may be optimized by the compiler, but will be
confusing in the meantime.
Noncompliant Code Example
String message = "hello world"; .
System.out.printin(message.toString()); // Noncompliant;
Compliant Solution
String message = "hello world";
System.out.println(message);

M4ETR BT

105

sonar

Driving_Reminder_Assistant Sonar Report

|StriantiIs.iava

|42

#M _ |Conditionally executed blocks should be reachable
MR Conditional expressions which are always true or false can lead
to dead code. Such code is always buggy and should never
be used in production.
Noncompliant Code Example
a = false;
if (@) { // Noncompliant
doSomething(); // never executed
if (!a || b) { // Noncompliant; "1a" is always "true", "b" is never
evaluated
doSomething();
} else { _
} doSomethingElse(); // never executed
Exceptions
This rule will not raise an issue in either of these cases:
When the condition is a single final boolean
;i/nal boolean debug = false;
if (debug) {
// Print something
When the condition is literally true or false.
if (true) {
// do something
ISn these cases it is obvious the code is as intended.
ee
MISRA C:2004, 13.7 - Boolean operations whose results are
invariant shall not be permitted.
MISRA C:2012, 14.3 - Controlling expressions shall not be
invariant
MITRE, CWE-570 - Expression is Always False
MITRE, CWE-571 - Expression is Always True
CERT, MSC12-C. - Detect and remove code that has no effect
or is never
executed
MHFTR BT
CustomAudioRecorder.java 96

106

sona r Driving_Reminder_Assistant Sonar Report

I |"entrySet()" should be iterated when both the key and value are needed

FRNHEA When only the keys from a map are needed in a loop, iterating
the dke(i/Set makes sense. But when both the key and the value are
needed,

it's more efficient to iterate the entrySet, which will give access to
both the key and value, instead.
Noncompliant Code Example

public void doSomethingWithMap(Map <String,Object> map) {
for (String key : m%F.keySet()) { // Noncompliant; for each key
the value is retrieve
?/bject value = map.get(key);
}
}

Compliant Solution

public void doSomethingWithMap(Map <String,Object> map) {
for (Map.Entry<String,Object> entry : map.entrySet()) {
String key = entry.getKe{//();

2bject value = entry.getValue();
-
}
N4ETR BT
HttpHelper.java 105

Fa |Packaqe names should comply with a naming convention

FNHEA Shared codinlg conventions allow teams to collaborate efficiently.
This rule checks that all package names match a provided regular

expression.

Noncompliant Code Example

With the default regular expression “[a-z_]+(\.[a-z_][a-z0-9_]*)*$:

package org.exAmple; // Noncompliant
Compliant Solution

package org.example;

MHBER BT
1

NativeCaller.java

|¥)|'|me |"iava.nio.FiIes#delete" should be preferred

107

sonar

Driving_Reminder_Assistant Sonar Report

AR A

MHBER

When java.io.File#delete fails, this boolean method simply
returns false with no indication of the cause. On

the other hand, when java.nio.Files#delete fails, this void
method returns one of a series of exception types to better
indicate the cause of the failure. And since more information is
ghenerally better in a debugging situation, java.nio.Files#delete is
the

preferred option.
Noncompliant Code Example

public void cleanUp(Path path) {
File file = new File(path);
if/(/!ﬁle.delete()) { // Noncompliant

}
}

Compliant Solution
Bublic void cleanUp(Path path) throws NoSuchFileException,

irectoryNotEmﬂtyException, IOException{
} Files.delete(path);

BT

ShowLocPicGridViewAdapter.java 173

|¥)|'|me |"Random" objects should be reused

108

sonar

Driving_Reminder_Assistant Sonar Report

R FEA Creating a new Random object each time a random value is
needed is inefficient and may produce numbers which are not
random depending o .
on the JDK. For better efficiency and randomness, create a single
Random, then store, and reuse it. . o
The Random() constructor tries to set the seed with a distinct
\éalue every time. However there is no guarantee that the seed will

e
random or even uniformly distributed. Some JDK will use the
current time as seed, which makes the generated numbers not
random at all.
This rule finds cases where a new Random is created each time a
method is invoked and assigned to a local random variable.
Noncompliant Code Example
public void doSomethingCommon() { . _
Random rand = new Random(); // Noncompliant; new instance
created with each invocation
int rValue = rand.nextInt();
Compliant Solution
grivate Random rand = SecureRandom.getInstanceStrong(); //
ecureRandom is preferred to Random
public void doSomethingCommon() {
int rValue = this.rand.nextInt();
/...
Exceptions
A class which uses a Random in its constructor or in a static
m?m function and nowhere else will be ignored by this
rule.
See
OWASP Top 10 2017 Category A6 - Security
Misconfiguration
MHFTR BT
StringUtils.java 26

|f)|'|.,mu |"wait(...)" should be used instead of "Thread.sleep(...)" when a lock is held

109

sonar

Driving_Reminder_Assistant Sonar Report

AR A

MHBER

If Thread.sleep(...) is called when the current thread holds a lock,
it could lead to performance and scalability issues, or even

worse to deadlocks because the execution of the thread holding
the lock is frozen. It's better to call wait(...) on the monitor object
to

temporarily release the lock and allow other threads to run.
Noncompliant Code Example

public void doSomething(){
synchronized(monitor) {

while(notReady()){
Thread.sleep(200);

process();

.

Compliant Solution
public void doSomething(){
synchronized(monitor) {

while(notReady()){
monitor.wait(200);

process();

.

See
CERT, LCK09-J. - Do not perform operations that can block

while holding a
lock

BT

MyRender.java

276

|¥)"'L,J|1U |Boxinq and unboxing should not be immediately reversed

110

sonar

Driving_Reminder_Assistant Sonar Report

FIEES oS

Boxing is the process of putting a primitive value into an
analogous object, such as creating an Integer to hold an int
value. Unboxing is the process of retrieving the primitive value
from such an object.

Since the original value is unchanged during boxing and
unboxing, there's no point in doing either when not needed. This
also applies to autoboxing
and auto-unboxing (when Java implicitly handles the
primitive/object transition for you).

Noncompliant Code Example

public void examinelnt(int a) {

}

public void examinelnteger(Integer a) {

}
public void func() {

inti =0;
Integer igerl = Integer.valueOf(0);
double d = 1.0;

int dIntValue = new Double(d).intValue(); // Noncompliant

examinelnt(new Integer(i).intValue()); // Noncompliant; explicit
box/unbox

examineInt(Int%ger.vaIueOf(i)); // Noncompliant; boxed int will
be auto-unboxe

examinelnteger(i); // Compliant; value is boxed but not then
unboxed

examinelnteger(igerl.intValue()); // Noncompliant; unboxed int
will be autoboxed

Integer iger2 = new Integer((ijgerl); // Noncompliant; unnecessary
unboxing, value can be reuse

}

Compliant Solution

public void examinelnt(int a) {

//...
}

public void examinelnteger(Integer a) {

/...
}

public void func() {

inti =0;
Integer igerl = Integer.valueOf(0);
double d = 1.0;

int dIntValue = (int) d;
examinelnt(i);

examinelnteger(i);
examinelnteger(igerl);

111

sonar

Driving_Reminder_Assistant Sonar

Repor t

I A —

MG BER ST
ShowLocPicGridViewAdapter.java 290

L |Parameters should be passed in the correct order
RANFEIA When the names of parameters in a method call match the names
of the method arguments, it contributes to clearer, more readable
code. However, when
the names match, but are passed in a different order than the
method arguments, it indicates a mistake in the parameter order
which will likely lead
to unexpected results.
Noncompliant Code Example
public double divide(int divisor, int dividend) {
return divisor/dividend;
public void doTheThing() {
int divisor = 15;
int dividend = 5;
double result = divide(dividend, divisor); // Noncompliant;
operation succeeds, but result is unexpected
}
Compliant Solution
public double divide(int divisor, int dividend) {
return divisor/dividend;
public void doTheThing() {
int divisor = 15;
int dividend = 5;
double result = divide(divisor, dividend);
XIHEFR BT
BridgeService.java 452
14. REEE
=11 java:Sonar way Bug:109 &iE:36 IRIkiE:206
AL it ERR S
Methods should not call same-class methods Bug BET
with incompatible "@Transactional" values

112

so n a r Driving_Reminder_Assistant Sonar Report
Methods "wait(...)", "notify()" and "notifyAll()" Bug =]
should not be called on Thread instances
Files opened in append mode should not be used |Bug BELT
with ObjectOutputStream
"PreparedStatement” and "ResultSet" methods |Bug BT
should be called with valid indices
"wait(...)" should be used instead of Bug =]
"Thread.sleep(...)" when a lock is held
Printf-style format strings should not lead to Bug BRI
unexpected behavior at runtime
"@SpringBootApplication" and _ Bug BT
"@ComponentScan” should not be used in the
default package
"@Controller" classes that use Bug BELAT
"@SessionAttributes" must call "setComplete” on
their "SessionStatus" objects
Loops should not be infinite Bug FEFT
"wait" should not be called when multiple locks |Bug BELAfT
are held
Double-checked locking should not be used Bug FEFT
Resources should be closed Bug R
Locks should be released Bug e
fotljm statements should not occur in "finally” Bug fa="1
ocks
"Random" objects should be reused Bug =
Dependencies should not have "system" scope Bug e
The signature of "finalize()" should match that of |Bug ="
"Object.finalize()"
"runFinalizersOnExit" should not be called Bug e
"ScheduledThreadPoolExecutor” should not have [Bug fa="1
0 core threads
Hibernate should not update database schemas |Bug e
"super.finalize()" should be called at the end of Bug ="
"Object.finalize()" implementations
Zero should not be a possible denominator Bug =
lgeltéers and setters should access the expected [Bug f=c1
ields
"toString()" and "clone()" methods should not Bug FE
return null
Servlets should not have mutable instance fields |Bug FE
Value-based classes should not be used for Bug FE
locking
Conditionally executed blocks should be Bug FE
reachable
Overrides should match their parent class Bug FE
methods in synchronization
"DefaultMessagelListenerContainer" instances Bug FE
should not drop messages during restarts
Reflection should not be used to check non- Bug FE

runtime annotations

113

so n a r Driving_Reminder_Assistant Sonar Report
"SingleConnectionFactory" instances should be |Bug FE
set to "reconnectOnException”
"hashCode" and "toString" should not be called |Bug FE
on array instances
Collections should not be passed as arguments to |Bug FE
their own methods
"BigDecimal(double)" should not be used Bug FE
Non-public methods should not be Bug FE
"@Transactional"
Invalid "Date" values should not be used Bug FE
Non-serializable classes should not be written Bug FE
Optional value should only be accessed after Bug FE
calling isPresent()
Pl?gks should be synchronized on "private final" |Bug FE
ields
"notifyAll" should be used Bug FE
".equals()" should not be used to test the values |Bug FE
of "Atomic" classes
Return values from functions without side effects |Bug FE
should not be ignored
Non-serializable objects should not be stored in |Bug FE
"HttpSession" objects
InputSteam.read() implementation should not Bug FE
return a signed byte
"InterruptedException” should not be ignored Bug FE
Silly equality checks should not be made Bug FE
Dissimilar primitive wrappers should not be used |Bug FE
with the ternary operator without explicit casting
"wait", "notify" and "notifyAll" should only be Bug FE
called when a lock is obviously held on an object
]'C'Double.longBitsToDoubIe" should not be used |Bug FE
or "int"
Values should not be uselessly incremented Bug FE
Null pointers should not be dereferenced Bug FE
Expressions used in "assert” should not produce |Bug FE
side effects
Classes extending java.lang.Thread should Bug FE
override the "run" metho
Loop conditions should be true at least once Bug FE
A "for" loop update clause should move the Bug FE
counter in the right direction
Intermediate Stream methods should not be left |Bug FE
unused
The Object.finalize() method should not be called [Bug FE
Consumed Stream pipelines should not be reused|Bug FE
Variables should not be self-assigned Bug FE
Ina%oropriate regular expressions should not be |Bug FE
use
"=+" should not be used instead of "+=" Bug FE

114

so n a r Driving_Reminder_Assistant Sonar Report
Loops with at most one iteration should be Bug FE
refactored
Classes should not be compared by name Bug FE
Identical expressions should not be used on both |Bug T8
sides of a binary operator
"Thread.run()" should not be called directly Bug F=
"null" should not be used with "Optional” Bug FE
"readd" and "readLine" return values should be Bug FE=
use
Strings and Boxed types should be compared Bug FE
using "equals()"
Methods should not be named "tostring”, Bug FE
"hashcode" or "equal”
Non-thread-safe fields should not be static Bug F=
Getters and setters should be synchronized in Bug FE2
pairs
Unary prefix operators should not be repeated Bug IT=E
"StringBuilder" and "StringBuffer" should not be [Bug FE
instantiated with a character
Week Year ("YYYY") should not be used for date |Bug FE
formatting
"equals" method overrides should accept Bug FE
"Object" parameters
Exception should not be created without being |Bug FE
thrown
Collection sizes and array length comparisons Bug FE
should make sense
Synchronization should not be based on Strings |Bug FE
or boxed primitives
Related "if/else if" statements should not have Bug FE
the same condition
All branches in a conditional structure should not |Bug FE
have exactly the same implementation
"Iterator.hasNext()" should not call Bug FE
"Iterator.next()"
Raw byte values should not be used in bitwise Bug FE
operations in combination with shifts
Custom serialization method signatures should |Bug FE
meet requirements
"Externalizable" classes should have no- Bug FE=
arguments constructors
"iterator” should not return "this" Bug FE
Child class methods named for parent class Bug FE
methods should be overrides
Inagpropriate "Collection" calls should not be Bug FE
made
"compareTo" should not be overloaded Bug FE
"volatile" variables should not be used with Bug FE
compound operators
Map values should not be replaced Bug FE

unconditionally

115

so n a r Driving_Reminder_Assistant Sonar Report
"getClass" should not be used for synchronization |[Bug FE
Min and max used in combination should not Bug FE
always return the same value
"compareTo" results should not be checked for |Bug IRE
specitic values
Double Brace Initialization should not be used Bug IRE
Boxing and unboxing should not be immediately |Bug RE
reversed
"Iterator.next()" methods should throw Bug IRE
"NoSuchElementException”
"@NonNull" values should not be set to null Bug IRE
Neither "Math.abs” nor negation should be used |Bug RE
on numbers that could be "MIN_VALUE"
The value returned from a stream read should be |Bug RE
checked
Method parameters, caught exceptions and Bug RE
foreach variables' initial values should not be
ignored
"equals(Object obj)" and "hashCode()" should be [Bug IRE
overridden in pairs
"Serializable" inner classes of non-serializable Bug RE
classes should be "static"
Math operands should be cast before assignment |Bug IRE
Ints and longs should not be shifted by zero or |Bug RE
more than their number of bits-1
"compareTo" should not return Bug RE
"Integer.MIN_VALUE"
The non-serializable super class of a "Serializable" |Bug RE
class should have a no-argument constructor
"toArray" should be passed an array of the proper|Bug RE
type
Non-primitive fields should not be "volatile" Bug IRE
"equals(Object obj)" should test argument type |Bug RE
Databases should be password-protected IEilE BELBT
Neither DES (Data Encrgption Standard) nor iR BEkT
DESede (3DES) should be used
Cryptographic keys should not be too short IBiE BRI
"javax.crypto.NullCipher" should not be used for |/%idE BELAT
anything other than testing
LDAP deserialization should be disabled IzilE FE#T
Untrusted XML should be parsed with a local, IilE BRI
static DTD
"HostnameVerifier.verify" should not always A BT
return true
"@RequestMapping" methods should speci IR FE T
HTTP method 0 pecify i
"@RequestMapping" methods should be "public" | RET
Credentials should not be hard-coded iBiE BRI
Default EJB interceptors should be declared in IilE BRI
"ejb-jar.xml"

116

labels

so n a r Driving_Reminder_Assistant Sonar Report
Struts validation forms should have unique PG BT
names
Persistent entities should not be used as TRiE ="
arguments of "@RequestMapping" methods
Defined filters should be used B =&
Cryptographic RSA algorithms should always iE ="
incorporate OAEP (Optimal Asymmetric
Encryption Padding)
"HttpOnly" should be set on cookies il FEE
XML transformers should be secured IR '8
"HttpServletRequest.getRequestedSessionld()" ilE fa="1
should not be used
LDAP connections should be authenticated imilE =
AES encryption algorithm should be used with iE ="
secured mode
"File.createTempFile" should not be used to pE =B
create a directory
"HttpSecurity" URL patterns should be correctly |i%iRE f=-1
ordered
Basic authentication should not be used IRilE e
Web applications should not have a "main” il =1
method
Authentication should not rely on insecure PG f=-1
"PasswordEncoder”
SMTP SSL connection should check server TRiE ="
identity
"SecureRandom" seeds should not be predictable |G =1
TrustManagers should not blindly accept any PG FE
certificates
Weak SSL protocols should not be used IR FE
Thlrlo(\gvabIe.printStackTrace(...) should not be PG RE
calle
Mutable fields should not be "public static" IR IRE
"public static" fields should be constant JRiE IRE
Exceptions should not be thrown from servlet i RE
methods
Class variable fields should not have public iR RE
accessibility
"enum" fields should not be publicly mutable IzilE IRE
Return values should not be ignored when they |i%iFE RE
contain the operation status code
Tests should include assertions KB BELIT
]ghliéld class fields should not shadow parent class |¥RERKIE BELT
ields
JUnit framework methods should be declared 7N S =] =]
properly
Assertions should be complete KB BRI
"clone" should not be overridden 7N SE] BELFT
"switch" statements should not contain non-case |IALKxiE R

117

triggered only by the JVM

so n a r Driving_Reminder_Assistant Sonar Report
Methods returns should not be invariant NS E] FEFT
Silly bit operations should not be performed NS E] BELEATT
Switch cases should end with an unconditional 7N STE] R T
"break" statement
Methods and field names should not be the same |IAKE R BT
or differ only by capitalization
JUnit test cases should call super methods N SE FERT
TestCases should contain tests N SE] BELBT
"ThreadGroup" should not be used N SE] BELFT
Future keywords should not be used as names N SE R
Short-circuit logic should be used in boolean RKE BRI
contexts
Constant names should comply with a naming 7N SE] fa=c1
convention
"default" clauses should be last 7N SE =B
IllegalMonitorStateException should not be 7N SE] =1
caught
Cognitive Complexity of methods should not be |¥AiKiE fa=:1
too high
Package declaration should match source file 717 ST fad=:1
directory
Null should not be returned from a "Boolean"” RkE =1
method
String offset-based methods should be preferred |¥ABKE ="
for finding substrings from offsets
Ecnsl’ijance methods should not write to "static" 7N S =] =1
ields
"indexOf" checks should not be for positive /NS E] =1
numbers
Factory method injection should be used in 7N SE] ="
"@Configuration" classes
"Object.finalize()" should remain protected 7N S =] ="
(versus public) when overriding
"Cloneables" should implement "clone" /NS E] TEER
"Object.wait(...)" and "Condition.await(...)" should [¥ABKiE =1
be called inside a "while" loop
Methods should not be empty /N SE =
"equals” method parameters should not be 7N SE] ="
marked "@Nonnull"
Classes should not access their own subclasses /NI S fad=1
during initialization
Exceptions should not be thrown in finally blocks |#RIKiE =1
Method overrides should not change contracts 7N SE =1
"for" loop increment clauses should modify the |IABKE =21
loops' counters
Constants should not be defined in interfaces INKIE Fa=1
Generic wildcard types should not be used in NKE =1
return parameters
Execution of the Garbage Collector should be 7N SE] ="

118

so n a r Driving_Reminder_Assistant Sonar Report
The Object.finalize() method should not be 7N SE] =1
overriden
Conditionals should start on new lines 7N SE =1
A conditionally executed single line should be INKE =1
denoted by indentation
Fields in a "Serializable" class should either be INKE =]
transient or serializable
"switch" statements should have "default" clauses |¥AlkiE =B
JUnit assertions should not be used in "run” 7N STE] e
methods
"readResolve" methods should be inheritable 7N SE =B
String literals should not be duplicated /NS E] =1
Class names should not shadow interfaces or 7N SE] =5
superclasses
Try-with-resources should be used NS E] =1
Boolean expressions should not be gratuitous INKIE FE
Track uses of "FIXME" tags NS E] FE
Parameters should be passed in the correct order |IAKIE FE=
"ResultSet.isLast()" should not be used NS E] FE
Nested blocks of code should not be left empty |IAKIE FE
"URL.hashCode" and "URL.equals" should be 7N SE| FE
avoided
Try-catch blocks should not be nested 7N SE] FE
Methods should not have too many parameters |[IAIKIE FE
Synchronized classes Vector, Hashtable, Stack 7N SE] FE
and StringBuffer should not be used
Generic exceptions should never be thrown 7N SE FE
"Lock" objects should not be "synchronized" /NS E] FE
Multiline blocks should be enclosed in curly 7N SE] FE
braces
Classes with only "static" methods should not be |tALKiE FE
instantiated
"static" members should be accessed statically 7N SE] FE
Utility classes should not have public constructors [IAKIE FE
Assertion arguments should be passed in the 7N SE] FE
correct order
Unused type parameters should be removed 7N SE FE
"switch" statements should not have too many |#ABKIE FE
"case" clauses
Unused "private" methods should be removed N SE FE
Redundant pairs of parentheses should be 7N SE] FE
removed
Ternary operators should not be nested 7N SE] FE
Inner class calls to super class methods should be |*AIKiE FE
unambiguous
Nullness of parameters should be guaranteed /NS E] FE
Unused method parameters should be removed [#4AIKIE FE
Only static class initializers should be used NS E] FE

119

so n a r Driving_Reminder_Assistant Sonar Report

Unused "private" fields should be removed 7N SE] FE

Collapsible "if" statements should be merged /NS E] FE

Unused labels should be removed 7N SE] FE

Throwable and Error should not be caught /NS E] FE

Printf-style format strings should be used 7N SE FE

correctly

"Integer.toHexString" should not be used to build |¥ABKE FE

hexadecimal strings

Labels should not be used N SE] FE

Constructors should not be used to instantiate 7N SES FE=

"String", "BigInteger”, "BigDecimal" and primitive-

wrapper classes

Enumeration should not be implemented 7N SE FE

Empty arrays and collections should be returned [3ABKE FE=

instead of null

Obijects should not be created only to "getClass" |IAlkiE FE=

Primitives should not be boxed just for "String" |¥A0KIE FE

conversion

Exceptions should be either logged or rethrown |3ABKE FE

but not both

"@Override" should be used on overriding and |¥ABKiE FE

implementing methods

"entrySet()" should be iterated when both the key |¥ABKiE FE

and value are needed

Assignments should not be made from within 7N SE] FE

sub-expressions

"Preconditions” and logging arguments should |¥ABKiE FE

not require evaluation

;C_Iass.forName()" should not load JDBC 4.0+ 57N ST FE
rivers

Java 8's "Files.exists" should not be used 7N SE] FE

Two branches in a conditional structure should /NI SE] FE

not have exactly the same implementation

Sections of code should not be commented out [IAIKIE FE

"Ma|o.get" and value test should be replaced with [3AIKE FE=

single method call

"Arrays.stream” should be used for primitive 7N SE] FE

arrays

Non-constructor methods should not have the 7N STE] FE

same name as the enclosing class

"readObject" should not be "synchronized" 7N SE FE

"Threads" should not be used where "Runnables" |¥AlkiE FE=

are expected

Java 8 features should be preferred to Guava NS E] FE

"for" loop stop conditions should be invariant NS E] FE

Llnheritance tree of classes should not be too INKE FE
eep

"Stream.peek” should be used with caution BN S E] FE

Unused "private" classes should be removed 7N SE] FE

120

"EMPTY SET" should not be used

so n a r Driving_Reminder_Assistant Sonar Report
A field should not duplicate the name of its 7N SE FE
containing class
Dead stores should be removed INERE FE
"DateUtils.truncate” from Apache Commons Lang [#RERE FE
library should not be used
Local variables should not shadow class fields N SE FE=
"Thread.sleep" should not be used in tests N SE] FE
Tests should not be ignored N SE] F=
Anonymous inner classes containing only one INKE FE
method should become lambdas
"Object.wait(...)" should never be called on 7N STE] FE
objects that implement
"java.util.concurrent.locks.Condition"
Deprecated elements should have both the 7N SE] FE
annotation and the Javadoc tag
Silly math should not be performed BN S E] FE
Standard outputs should not be used directly to |#ALKE FE
log anything
"writeObject" should not be the only 7N SE] FE
"synchronized" code in a class
Classes named like "Exception” should extend 7N SE FE2
"Exception” or a subclass
Static fields should not be updated in 7N SE] FE
constructors
Exception types should not be tested using N SE] FE
"instanceof" in catch blocks
Classes from "sun.*" packages should not be used [#4AkiE FE
String function use should be optimized for /NS E] =
single characters
Assignments should not be redundant N SE] FE
"java.nio.Files#delete" should be preferred 7N SE] FE
Methods should not have identical RRE FE
implementations
Asserts should not be used to check the IRRE FE
parameters of a public method
glourlge files should not have any duplicated 7N SE] FE

ocks

Field names should comply with a naming 717 ST RE
convention
Interface names should comply with a naming 7N S| RE
convention
Type parameter names should comply with a NG STE] RE
naming convention
Local variable and method parameter names INRE RE
should comply with a naming convention
Package names should comply with a naming /NI STE] RE
convention
iA "while" loop should be used instead of a "for" |¥AiKE RE
oop
"Collections.EMPTY_LIST", "EMPTY_MAP", and IRRE IRE

121

replaced with EnumMap

so n a r Driving_Reminder_Assistant Sonar Report
Lloggers should be named for their enclosing 7N ST RE
classes
Unnecessary imports should be removed 7N SE IRE
Return of boolean expressions should not be 7N SE IRE
wrapped into an "if-then-else" statement
Boolean literals should not be redundant N SE] IRE
Local variables should not be declared and then |#REKiE IREE
immediately returned or thrown
De%recated "${pom}" properties should not be /NS IRE
use
Unused local variables should be removed 7N SE] IRE
Catches should be combined N SE] RE
Null checks should not be used with "instanceof" |#AIKXiE IRE
Methods of "Random" that return floating point |¥AIKI&E IRE
values should not be used in random integer
generation
"@CheckForNull" or "@Nullable" should not be |tALKIE IRE
used on primitive types
Public constants and fields initialized at N SE| IRE
declaration should be "static final" rather than
merely "final"
Overriding methods should do more than simply |tALKiE RE
call the same method in the super class
Static non-final field names should comply with a |tALKiE IRE
naming convention
Classes that override "clone" should be 7N SE] IRE
"Cloneable" and call "super.clone()"
Primitive wrappers should not be instantiated /NI SE RE
only for "toString" or "compareTo" calls
Case insensitive string comparisons should be |tALKiE IRE
made without intermediate upper or lower casing
Collection.isEmpty() should be used to test for 7N SE] RE
emptiness
gtr]ng.valueOf() should not be appended to a 7N SE] IRE

tring

Method names should comply with a naming /NS E] RE
convention
Class names should comply with a nhaming NG STE] RE
convention
Exception classes should be immutable IRERE IRE
Parsing should be used to convert "Strings" to 7N ST RE
primitives
"read(byte[],int,int)" should be overridden 7N SE] IRE
Multiple variables should not be declared on the |¥AIki& IRE
same line
"switch" statements should have at least 3 "case" [IAKE IRE
clauses
IStrings should not be concatenated using '+' in a [¥AEKIE RE
oop
Maps with keys that are enum values should be |IABKE RE

122

so n a r Driving_Reminder_Assistant Sonar Report

"catch" clauses should do more than rethrow 7N SE] IRE
Nested "enum"s should not be declared static /NS E] IRE
equals(Object obj)" should be overridden along |¥ABKIE RE

with the "compareTo(T obj)" method

Private fields only used as local variables in 7N SE] IRE
methods should become local variables

Arrays should not be created for varargs 7N SE] RE
parameters

Methods should not return constants 7N SE] IRE

Theddefault unnamed package should not be N STE] RE
use

Declarations should use Java collection interfaces |¥AIki&E IRE

such as "List" rather than specific implementation

classes such as "LinkedList

An iteration on a Collection should be performed |*AIKiE IRE

on the type handled by the Collection

"StandardCharsets" constants should be 7N SE] IRE
preferred

Jump statements should not be redundant NS E] IRE
"close()" calls should not be redundant N SE IRE
Boolean checks should not be inverted NS E] IRE
"indexOf" checks should use a start position INKIE IRE
Redundant casts should not be used BN S E] IRE
"ThreadLocal.withlnitial" should be preferred INKIE IRE
"@Deprecated" code should not be used NS E] IRE

Abstract classes without fields should be INKE IRE

converted to interfaces

"tt())_String()" should never be called on a String 7N SE] IRE

object

Lambdas should be replaced with method 7N SE] RE
references

Parentheses should be removed from a single KB RE
lambda input parameter when its type is inferred

JUnit rules should be used NS E RE

Annotation repetitions should not be wrapped 7N SE] IRE
Lambdas containing only one statement should |¥/ki& RE
not nest this statement in a block

Loops should not contain more than a single 7N SE] RE
"break" or "continue" statement

Abstract methods should not be redundant N SE IRE
"ﬁrivate“ methods called only by inner classes 7N STE] RE

should be moved to those classes

Composed "@RequestMapping" variants should [JAEKE RE
be preferred

Fields in non-serializable classes should not be 7N SE] IRE
"transient”

Empty statements should be removed 7N SE] RE
"write(byte[],int,int)" should be overridden N SE IRE
Nested code blocks should not be used NS E] IRE

123

son a r Driving_Reminder_Assistant Sonar Report

Array designators "[]" should be on the type, not [JAEKIE RE

the variable

"finalize" should not set fields to "null" 7N SE IRE
URIs should not be hardcoded 7N STE IRE

Array designators "[]" should be located after the |¥ABKiE RE

type in method signatures

§ubc|alls“ses that add fields should override /NS =] IRE
equals

The diamond operator ("<>") should be used NS E] IRE
"throws" declarations should not be superfluous |¥AkkiE IRE
Modifiers should be declared in the correct order [IAlkiE IRE
"Stream" call chains should be simplified when ALK& RE
possible

Functional Interfaces should be as specialised as |¥AIkiE IRE
possible

Packages containing only "package-info.java" 7N SE] RE

should be removed

Classes should not be empty NS E] RE

Track uses of "TODQO" tags /N SE] Br
Deprecated code should be removed BN S E] B

124

	目录
	1. Driving_Reminder_Assistant
	1.1. 概述
	1.2. 问题分析
	1.3. 问题详情
	1.4. 质量配置

