AVPro Video

for Android, iOS, tvOS, macOS, WebGL
Windows Desktop, Windows Phone and UWP

Unity plugin for fast and flexible video playback

Version 1.10.1

Released 2™ October 2019

Contents

1.

Introduction
1. Features
2. Trial Version
3. Media Credits

2. System Requirements

3.

1.

Platforms not supported

Installation

1.
2.

Trial Version & Watermark Notes
Installing Multiple Platform Packages

4. Usage Notes

10.
1.

1.

Platform Notes

2. Video File Locations
3. Streaming Notes
4. Audio Notes
5. Augmented / Virtual Reality Notes
6. Hap Codec Notes
7. Transparency Notes
8. Hardware Decoding
9. Multi-GPU SLI / CrossFire Notes
10. Subtitle Notes
11. DRM / Encryption Notes
12. Video Capture Notes
13. Seeking / Playback Rate Notes
Quick Start Examples
1. Quick Start Fastest Start for Unity Experts
2. Quick Start Fullscreen Video Player using Prefabs
3. Quick Start 3D Mesh Video Player Example using Components
Usage
1. Getting Started
2. Unsupported Platform Fallback
3. Components
4. Scripting
5. Platform Specific Scripting
6. Third-party Integration
Asset Files
1. Demos
2. Prefabs
3. Scripts
Scripting Reference
Supported Media Formats
Support
About RenderHeads Ltd

Appendix A - FAQ
Appendix B - Version History
Appendix C - Roadmap

2/66

1. Introduction

AVPro Video is the newest video playback plugin from RenderHeads. We previously
developed the AVPro QuickTime and AVPro Windows Media plugins for Unity. In this next
generation of plugins we aim to create an easy to use, cross-platform video playback system
that uses the native features of each platform.

1.1 Features

e \Versions for iOS, tvOS, macOS, Android, WebGL, Windows, Windows Phone and
UWP

One API for video playback on all supported platforms

NEW™ Facebook Audio 360 and Android ExoPlayer support
8K video support (on supported hardware)

VR support (mono, stereo, equirectangular and cubemap)
Transparency support (native and packed)

Unity Pro 4.6.x and above supported

Unity Personal 5.x - 2019.1.x and above supported

Free watermarked trial version available (download here)
Fast native Direct3D, OpenGL and Metal texture updates
Linear and Gamma colour spaces supported

Graceful fallback in editor

Components for IMGUI, uGUI and NGUI

Extensive PlayMaker support

Easy to use, drag and drop components

Desktop support for Hap, Hap Alpha, Hap Q and Hap Q Alpha
Streaming and adaptive video from URL

1.2 Trial Version

We offer an unlimited trial version of AVPro Video for download from our website at
http://renderheads.com/product/avpro-video/. The trial version has no missing features or
time restrictions but it does apply a watermark to the rendered output. The watermarking
does have a small performance impact which is only really noticeable on very high resolution
videos.

1.3 Media Credits

BigBuckBunny_360p30.mp4 - (c) copyright 2008, Blender Foundation /
www.bigbuckbunny.org

BigBuckBunny_720p30.mp4 - (c) copyright 2008, Blender Foundation /
www.bigbuckbunny.org

SampleSphere.mp4 - (c) copyright Daniel Arnett, https://vimeo.com/97887646

3/66

http://renderheads.com/product/avpro-video/
http://renderheads.com/product/avpro-video/
http://www.bigbuckbunny.org/
http://www.bigbuckbunny.org/
https://vimeo.com/97887646

2. System Requirements

e Unity
o 2019.x, 2018.x, 2017.x, 5.6 Personal Edition - all supported platforms
o 4.6 Pro - all supported platform except iOS, tvOS and macOS
e Platforms
o iOS 8.1 and above
tvOS 9.0 and above
macOS 10.8 and above, 64-bit only
Android 4.0.3 (lce Cream Sandwich, API level 15) and above (ARM7, ARM8
and x86)
Windows XP (SP 3) and above (32-bit and 64-bit)
Windows 8.0 and above (32-bit and 64-bit)
Windows Phone UWP 8.1 (32-bit and ARM)
Windows Desktop UWP 8.1 (32-bit, 64-bit and ARM)
Universal Windows Platform 10 (32-bit, 64-bit and ARM)
WebGL compatible browser

o O O

o O O O O O

2.1 VR/ AR/ MR/ XR Headsets Supported

e Microsoft Hololens (UWP)

e Windows mixed-reality headsets (UWP):
o Samsung Odyssey

Asus

HP

Acer

Lenovo Explorer

Dell Visor

HTC Vive (Windows desktop)

HTC Vive Pro (Windows desktop)

HTC Vive Focus (Android)

Oculus Rift (Windows desktop)

Oculus Rift Go (Android)

Oculus Gear VR (Android)

Google Cardboard (Android)

Google Daydream (Android)

Pico Goblin & Neo (Android)

StarVR (Windows desktop)

Lenovo Mirage Solo (Android)

o O O O O

2.2 Platforms not Supported
WebPlayer

Linux desktop

Tizen

Samsung TV

4 /66

e Game Consoles (XBox*, PS4 etc)

* XBox One may be supported using UWP build option. We have not tested this though.

3. Installation

1. Open up a fresh Unity session (to clear any locked plugin files)
2. Import the unitypackage file into your Unity project. If prompted to upgrade some
scripts click Yes.

3.1 Trial Version & Watermark Notes

3.1.1 Watermark

If you are using a trial version of the plugin then you will see a watermark displayed over the
video. The watermark is in the form of a “RenderHeads” logo that animates around the
screen, or a thick horizontal bar that move around the screen. In Windows if the GPU
decoding path is used when the watermark isn’t displayed - instead every few seconds the
video size will scale down.

The full version of AVPro Video has no watermarks for any platforms. If you use one of the
platform specific packages (eg AVPro Video for iOS, or AVPro Video for Windows) then you
will not see the watermark on the platform you purchased for, but you will see the watermark
on the other platforms. For example if you purchased AVPro Video for iOS then you will still
see the watermark in the Unity editor as this is running on Windows/OS X, but the videos
played back when you deploy to your iOS device will be watermark-free.

3.1.2 Updating from Trial Version

If you are upgrading from the trial version, make sure you delete the old /Assets/Plugins
folder as this contains the trial plugin and could conflict. You may need to close Unity first,
delete the files manually and then restart Unity and re-import the package (because Unity
locks native plugin files once they are loaded).

You can check which version you have installed by adding an MediaPlayer component to

your scene and clicking on the ‘about’ button in the Inspector for that component. The
version number is displayed in this box.

3.2 Installing Multiple Platform Packages

If you are not using the full all-in-one AVPro Video package and instead have opted to
purchase multiple individual platform packages then the installation must be done carefully,
especially when upgrading to a new version.

5/66

If you have installed the iOS package then it will also contain plugins for all of the other
platforms but with the watermark enabled. This means that if you then try to install another
AVPro Video package it may not override the plugins correctly. Here is how to resolve this
using the iOS and Android package as examples:

1. Open a fresh Unity instance (this is important as otherwise Unity may have locked
the plugin files which prevents them from being upgraded)

2. Import the iOS package

3. Import the Android package, but make sure that you have the iOS native plugin file
unticked (so that it is not overwritten)

A similar process can be applied for other package combinations.
List of native plugin files:

e Android

o Plugins/Android/AVProVideo.jar

o Plugins/Android/libs/armeabi-v7a/libAVProLocal.so

o Plugins/Android/libs/arm64-v8a/libAVProLocal.so

o Plugins/Android/libs/x86/libAVProLocal.so
e macOS

o Plugins/AVProVideo.bundle
e iOS

o Plugins/iOS/libAVProVideoiOS.a
e tvOS

o Plugins/tvOS/libAVProVideotvOS.a
e WebGL

o Plugins/WebGL/AVProVideo.jslib
e Windows

o Plugins/WSA/PhoneSDK81/ARM/AVProVideo.dll
Plugins/WSA/PhoneSDK81/x86/AVProVideo.dll
Plugins/WSA/SDK81/ARM/AVProVideo.dll
Plugins/WSA/SDK81/x86/AVProVideo.dll
Plugins/WSA/SDK81/x86_64/AVProVideo.dll
Plugins/WSA/UWP/ARM/AVProVideo.dll
Plugins/WSA/UWP/x86/AVProVideo.dll
Plugins/WSA/UWP/x86_64/AVProVideo.dll
Plugins/x86/AVProVideo.dll
Plugins/x86_64/AVProVideo.dll

o O O O O O O O O

6/66

4. Usage Notes

4.1 Platform Notes

Most graphics APIs are supported:

D3D9 | D3D11 | OpenGL | GLES2.0 | GLES3.0 Metal Vulkan
Android N/A N/A N/A Yes Yes N/A No
iOS / tvOS N/A N/A N/A Yes Yes Yes No
macOS N/A N/A Yes N/A N/A Yes* No
Windows Yes Yes Yes N/A N/A N/A No
UWP N/A Yes N/A N/A N/A N/A No

N/A = not applicable
* Recommend using OpenGL Core instead of Metal on macOS as we have had
reports of rendering issues with some GPUs

4.1.1 Android

Supported systems are arm-v7a, arm64-v8a and x86
Under the hood we’re using the Android MediaPlayer API and ExoPlayer 2.8.4 API
This plugin requires a minimum Android API level of 15 when using the MediaPlayer
API, and API level 16 when using ExoPlayer (due to its use of MediaCodec).
If you want to support streaming don’t forget to set the “Internet Access” option in
Player Settings to “require”
For rendering we supports OpenGL ES 2.0 and OpenGL ES 3.0
Multi-threaded rendering is supported
The only 3rd-party libraries used are:
o ExoPlayer 2.8.4
https://github.com/google/ExoPlayer
o Facebook Audio 360 1.6.0
https://facebook360.fb.com/spatial-workstation/

i0OS / tvOS

Supported systems are armv7, arm64

The iOS simulator is supported on x86 and x86_64

Under the hood we’re using the AVFoundation API

If you want to support streaming you need to enable HTTP downloads explicitly. For
iOS this is an option in newer versions of Unity, but for Mac OS X and older versions
of Unity you have to do this explicitly by editing the plist file. There are notes below
on how to do this.

For rendering we support OpenGL ES 2.0, OpenGL ES 3.0 and Metal

7166

https://github.com/google/ExoPlayer
https://facebook360.fb.com/spatial-workstation/

e Multi-threaded rendering is supported
e 3rd-party libraries
o miniz
o https://github.com/richgel999/miniz

4.1.3 macOS

e Only 64-bit (x86_64) builds are supported (Apple dropped 32-bit support back in
2012 when launching OS X 10.8).
Under the hood we’re using the AVFoundation API
e |f you want to support streaming you need to enable HTTP downloads explicitly. For
iOS this is an option in newer versions of Unity, but for Mac OS X and older versions
of Unity you have to do this explicitly by editing the plist file. There are notes below
on how to do this.
e For rendering on Mac OS X we support OpenGL Legacy and OpenGL Core and
Metal.
e Multi-threaded rendering is supported
e The only 3rd-party libraries used in the macOS binaries are:
o Hap
https://github.com/Vidvox/hap
miniz
o https://github.com/richgel999/miniz

4.1.4 Windows Desktop

e Under the hood we’re using the Media Foundation and DirectShow API's. Media
Foundation is used for Windows 8 and above while DirectShow is used as a fallback
for Windows 7 and below.

For rendering we support Direct3D 9, Direct3D 11 and OpenGL Legacy.
Multi-threaded rendering is supported.

e Windows N / KN edition notes:

o There are some editions of Windows (N and KN) that ship with greatly
reduced built-in media playback capabilities.

o It seems like these editions don’t include MFPIat.DLL, but do include some
basic DirectShow components. This means the Media Foundation playback
path will not work.

o These editions of Windows require either a 3rd party codec installed (such as
the LAV Filters for DirectShow), or the Microsoft Media Feature Pack:

m Media Feature Pack for Windows 7 SP1
https://www.microsoft.com/en-gb/download/details.aspx?id=16546

m Media Feature Pack for Windows 8.1
https://www.microsoft.com/en-gb/download/details.aspx?id=40744

m Media Feature Pack for Windows 10
https://www.microsoft.com/en-gb/download/details.aspx?id=48231

o We found that MJPEG DirectShow codec still works on these editions without
installing the Media Feature Pack

8/66

https://github.com/Vidvox/hap
https://www.microsoft.com/en-gb/download/details.aspx?id=16546
https://www.microsoft.com/en-gb/download/details.aspx?id=40744
https://www.microsoft.com/en-gb/download/details.aspx?id=48231

e The only 3rd-party libraries used in the Windows Desktop binaries are:

o Hap
https://github.com/Vidvox/hap

o Google Snappy
https://github.com/google/snappy

o GDCL Mpeg-4
https://github.com/roman380/gdcl.co.uk-mpeg4

o GLEW
http://glew.sourceforge.net/

o Facebook Audio 360 1.6.0
https://facebook360.fb.com/spatial-workstation/

4.1.5 Windows Store / UWP / Hololens

e For best compatibility and performance add
appCallbacks.AddCommandLineArg("-force-d3d11-no-singlethreaded"”);

To your MainPage.xaml.cs/cpp or MainPage.cs/cpp. You should call this before the
appCallbacks.Initialize() function.

e For streaming video don’t forget to enable to “InternetClient” capability option in
Unity’s Player Settings. If you're streaming video from a local server / LAN then you
need to enable the “PrivateNetworkClientServer” option.

e No 3rd-party libraries are used in the WSA / UWP binaries

4.1.6 WebGL

e The supported formats and features is dependant on the web browser capabilities
e For best compatibility you can always force WebGL 1.0 instead of 2.0 which is the
default. This is done by going to Player Settings > Other Settings > Auto Graphics
APl and removing WebGL 2.0. We have tested successfully with the following
browsers
o macOS
m Safari 9.1
m Safari 10 (WebGL 1.0 seemed to work better than WebGL 2.0)
m Safari 11.0.1
o Windows
m Microsoft Edge 38.14393.0.0
m Mozilla Firefox 51.0
m Google Chrome 56.0 - 62.0
e The following browsers are not supported:
o Internet Explorer 11 (any version), instead use the Microsoft Edge browser

4.2 Video File Location

Video files can be played in almost any location, however we recommend placing video files

9/66

https://github.com/Vidvox/hap
https://github.com/google/snappy
https://github.com/roman380/gdcl.co.uk-mpeg4
http://glew.sourceforge.net/
https://facebook360.fb.com/spatial-workstation/

in the /Assets/StreamingAssets/ folder in your Unity project as this is the easiest folder to
get started with. StreamingAssets is a special folder that Unity copies to the build without
processing. Files copied elsewhere will require manual copying to the build location.

The MediaPlayer component allows you to browse for video files and specify them relative to
a parent folder:

B, ¥ Media Player (Script)

Source Path

Relative To Streaming Assets Folder
Absclute Path Or URL
Relative To Project Folder
Relative To Streaming Assets Folder
Relative To Data Folder
Relative To Peristent Data Folder

The Video Location field specifies the master location of the video file while the Video Path
field specifies where to locate the file relative to the Location.

For example if your file is stored in “Assets/StreamingAssets/video.mp4” you would set the
Location to “Relative To Streaming Assets Folder” and set the Video Path to “video.mp4”.

Sub-folders are also supported so a video located at
“Assets/StreamingAssets/myfolder/video.mp4” would have it's Video Path set to
“myfolder/video.mp4”.

You can also specify absolute paths, URLs or paths relative to other locations:

4.2.1 Relative To StreamingAssets Folder

This is the best and most common location for video files. This folder is located at
“Assets/StreamingAssets/” and you must create it if it doesn’t exist. Files copied to this
folder will not be imported or processed by Unity but they will be copied with the build
automatically.

On Android though this folder isn’t ideal for massive files, as they are memory mapped and
S0 we've seen some devices have memory issues. For Android this folder is fine for
small-medium files (up to about 800MB depending on the device types you're targeting), but
beyond that it's better to copy or download the file into the persistent data folder and load it
from there.

4.2.2 Absolute Path or URL

Here you can specify a full URL or absolute path to the video file. A URL could be in the
form “http://myserver.com/myvideo.mp4” or “rtsp://myserver.com:8080/mystream.rtsp”

10/66

depending on the platform support and streaming service used.
An absolute path would look like:

C./MyFolder/AnotherFolder/MyVideo.mp4 (Windows)
/Users/Mike/downloads/MyVideo.mp4 (Mac/Linux)
/Storage/SD/Videos/MyVideo.mp4 (Android external SDCARD)
/Storage/emulated/0/MyFolder/MyVideo.mp4 (Android local file system)
/mnt/sdcard/MyFolder/MyVideo.mp4 (Android Oculus Go)

Using absolute paths can be useful for testing but isn’t useful when deploying to other
machines that don’t necessarily have the same file structure.

4.2.3 Relative To Project Folder

The project folder is the folder of your Unity project, so the folder containing the Assets,
Library and Project Settings sub-folders. Specifying files relative to the project folder can be
useful when you don’t want to include the video files in your Unity Assets folder but want to
keep them within the project folder structure. Often making a sub-folder called “Videos” is
useful. One possible problem of using this location is that when making a build your video
files will not be copied automatically to the build destination so they require manual copying.
For builds this folder should be located:

Windows - at the same level as your EXE

Mac - at the same level as the Contents folder in your app bundle

iOS - at the same level as the AppName.app/Data folder

Android - not accessible due to APK packaging unless you build the APK manually.

4.2.4 Relative To Data Folder

The data folder is specified by Unity here:
http://docs.unity3d.com/ScriptReference/Application-dataPath.html

It isn’t that useful to put video files into this folder directly as they would then be processed
by Unity into VideoClip’s or MovieTexture’s and will bloat your project size. If you want to
stop Unity processing the video files simply rename the extension to something Unity doesn’t
understand, so “myvideo.mp4” could be renamed to “myvideo.mp4.bin”. Files within the
data folder (Assets folder in the editor) are not copied automatically to builds so you would
have to manually copy them.

4.2.5 Relative to Persistent Data Folder

The persistent data folder is specified by Unity here:
http://docs.unity3d.com/ScriptReference/Application-persistentDataPath.html

For UWP platforms this would resolve to “ms-appdata:///local/”

11/66

http://docs.unity3d.com/ScriptReference/Application-dataPath.html
http://docs.unity3d.com/ScriptReference/Application-persistentDataPath.html

12 /66

AVPro Video © 2016-2019 RenderHeads Ltd

4.3 Streaming Notes

AVPro Video supports several streaming protocol depending on the platform:

HTTP HLS MPEG-Dash RTSP
Progressive
Streaming
Windows Yes Yes Yes Only with ASF
Desktop (Windows 10 (Windows 10 stream, or with
only) only) DirectShow
using suitable
filter
UWP Yes Yes Yes No
(UWP 10 only) | (UWP 10 only)
macOS Yes Yes No No
iOS Yes Yes No No
tvOS Yes Yes No No
Android Yes Yes, but better | Yes, with Yes, with
on newer ExoPlayer APl | MediaPlayer
versions API
WebGL Yes* Browser Browser No
specific* ** specific* **

* Remember for WebGL streaming you need to have proper CORS set up when accessing
other servers / ports. See our notes below on streaming with WebGL.

** In WebGL you can use the hls.js and dash.js libraries. See Streaming section for
implementation details.

HTTP Progressive Streaming

When encoding MP4 videos for streaming make sure they are encoded with the video
header data at the beginning of the file. You normally do this by selecting “Fast Start” in
QuickTime encoder, or use the “-movflags faststart” in FFMPEG, Other encoders will have a
similar option. To prepare an MP4 for streaming using FFMPEG you can use the following
command:

ffmpeg -1 %1 -acodec copy -vcodec copy -movflags faststart %$1l-streaming.mpé

13/66

Vimeo Note:

If you are streaming videos from VIMEO as MP4 then you should note that you can replace
the “.mp4” part in the URL with “.m3u8” to instead make it an HLS stream. This may be
particularly useful if you are developing apps for the Apple’s App Store as you would need to
use HLS streaming to pass certification (as for April 2016).

4.3.1 macOS, iOS and tvOS Streaming

This platform supports streaming of HLS streams which typically end with the m3u or m3u8
extension.

If you have an HTTPS URL it should work fine because Apple trusts the secure connection.

If you can only use HTTP then you app has to have a special flag set to let it use HTTP
connections (this is a security issue for Apple).

This setting is exposed in the Unity Player Settings here for iOS and tvOS:

ires Persistent WiFi

arin Background Suspend

v
ble HW Statistics v

Architecture Universal

The setting is also exposed in the scripting API here:
http://docs.unity3d.com/ScriptReference/PlayerSettings.iOS-allowHTTPDownload.html

If for some reason your version of Unity doesn’t expose this then you will have to add it
manually. In the Unity editor you need to edit "Unity.app/Contents/Info.plist" and in your built
application you would need to edit "your.app/Contents/Info.plist". These files need to have
these keys added:
<key>NSAppTransportSecurity</key>
<dict>

<key>NSAllowsArbitraryLoads</key>

<true/>
</dict>

You can find more information about this here:
http://ste.vn/2015/06/10/configuring-app-transport-security-ios-9-osx-10-11/

We’ve also included a post process build script called “PostProcessBuild.cs” in the project
which edits the plist and adds this attribute. Currently it's only set for iOS but you can edit
the #define at the top to allow Mac OS X too.

4.3.2 Android Streaming

Using the ExoPlayer API is recommended for streaming video as it generally has wider

14 /66

http://docs.unity3d.com/ScriptReference/PlayerSettings.iOS-allowHTTPDownload.html
http://ste.vn/2015/06/10/configuring-app-transport-security-ios-9-osx-10-11/

support for streaming protocols. Android streaming requires the Internet Access setting (in
Player Settings) to be set to “Require”:

Configuration

External (SDCard)

4.3.3 UWP / Windows Phone / Hololens Streaming

Make sure to tick the “InternetClient” capabilities option in Player Settings. If you're
streaming video from a local server / LAN then you need to enable the
“PrivateNetworkClientServer” option.

4.3.4 WebGL Streaming

If you are trying to access a URL on another server/port/domain then you need to have
CORS (cross-origin resource sharing) configured on that server to allow access. Websites
like https://enable-cors.org/ show you how to configure CORS on different web servers. If
you are hosting on a S3 bucket there are also ways to configure this. You can also test
whether CORS is the issue by installing a browser plugin to toggle CORS, for example this
one for Chrome:
https://chrome.google.com/webstore/detail/allow-control-allow-origi/nifombojpeacfghkpbjhddi

hikkiljbi

HLS and MPEG-DASH are not natively supported by all browsers. We have added hooks to
include third-party javascript libraries to handle these formats. Under the “Platform Specific
> WebGL” section you can select “External Library”. This will force the MediaPlayer to use
either hls.js or dash.js. You can also select “custom” if you wish to add support for your own
javascript library.

To add support or dash.js:

1. Download the latest dash.js release (we tested with 2.8.0):
https://github.com/Dash-Industry-Forum/dash.js/releases

2. Copy “dash.all.min.js” to the Assets/Plugins/WebGL folder and rename it
“dash.all.min.jspre”

3. In the MediaPlayer component set Platform Specific > WebGL > External Library to
dash.js

4. Build for WebGL

To add support for his.js:

1. In the MediaPlayer component set Platform Specific > WebGL > External Library to
his.js

15/66

https://enable-cors.org/
https://chrome.google.com/webstore/detail/allow-control-allow-origi/nlfbmbojpeacfghkpbjhddihlkkiljbi
https://chrome.google.com/webstore/detail/allow-control-allow-origi/nlfbmbojpeacfghkpbjhddihlkkiljbi
https://github.com/video-dev/hls.js/
https://github.com/Dash-Industry-Forum/dash.js
https://github.com/Dash-Industry-Forum/dash.js/releases

2. Build for WebGL

3. Download the latest hls.js release (we tested with 0.10.1):
https://github.com/video-dev/hls.js/releases

4. Once your build is made, copy “hls.min.js” to the TemplateData folder

5. Edit the index.html to add <script src="TemplateData/hls.min.js"></script> before the
UnityLoader.js script is loaded. Ideally you would add this to a new WebGL template
so that you don’t have to make these changes for each build.

4.3.5 Test Streams

We found these streams handy for testing (no guarantee that they’re still working):

e Streaming MP4

o HTTP
http://downloads.renderheads.com/2016/BigBuckBunny_360p30_Streaming.
mp4

o HTTPS
https://drive.google.com/uc?export=download&id=0BOJMGMGgxp9WMEdWb
1hyQUhIOWSs

e HLS

o http://qthttp.apple.com.edgesuite.net/1010gwoeiuryfg/sl.m3u8
o http://184.72.239.149/vod/mp4:BigBuckBunny_115k.mov/playlist. m3u8
o Apple Test streams (from https://developer.apple.com/streaming/examples/)
m Basic complexity
https://devimages.apple.com.edgekey.net/streaming/examples/bipbop
_4x3/bipbop_4x3_variant.m3u8
m Medium complexity
https://devimages.apple.com.edgekey.net/streaming/examples/bipbop
_16x9/bipbop_16x9_variant.m3u8
m Advanced TS
https://tungsten.aaplimg.com/VOD/bipbop_adv_example_v2/master.m
3u8
m Advanced fMP4
https://tungsten.aaplimg.com/VOD/bipbop_adv_fmp4_example/master
.m3u8
e MPEG-Dash
o http://rdmedia.bbc.co.uk/dash/ondemand/bbb/2/client_manifest-high_profile-c
ommon_init.mpd
o http://www.bok.net/dash/tears_of steel/cleartext/stream.mpd
e RTSP
o rtsp://tmp.infomaniak.ch/livecast/latele
e RTMP
o RTMP is not supported on any platform yet (unless 3rd party support is used)

4.4 Audio Notes

4.4.1 Facebook Audio 360

16 /66

https://github.com/video-dev/hls.js/releases
https://developer.apple.com/streaming/examples/

Spatial audio support is currently available using Facebook Audio 360 on Windows desktop
and Android. On Windows only Windows 10 and above is supported and the Media
Foundation video API must be selected. On Android the ExoPlayer video APl must be
selected. The video files must be using a MKYV file container and audio must be using the
Opus codec encoded with Facebook Audio 360.

The best way to encode the video is to use the FB360 Encoder tool which comes as part of
the FB360 Spatial Workstation. Set Output Format to “FB360 Matroska (Spatial Workstaton
8 channel)” and then set your video and audio source files and encode your video. This
should create a MKV file with 10 channels of Opus audio.

Facebook Audio 360
Head Transform Main Camera ©

Enable Fo

Mone (Transforr @

The settings are located under the Audio section of the MediaPlayer component. The “Head
Transform” field must be set to the transform that represents the player's head so that
rotation and positional changes affect the audio rendering. Usually this is the main camera.

“‘Enable Focus” can be enabled when a specific region of audio in the 360 field needs to be
given focus. The rest of the audio has its volume reduced.

Next the Facebook Audio 360 support must be enabled for each platform that needs it via
the “Platform Specific” panel. Currently it is only available on Windows desktop and Android.

Enable Audio 360 v
Audio 360 Channel N TBE_E8_2

Audio Device Name | Rift Audio

The “Channel Mode” must be set to the channel encoding mode used when creating the
video. Currently this can not be determined automatically. The default is “TBE_8 2” which
means 8 channels of hybrid ambisonics and 2 channels of head-locked stereo audio.

More information on encoding etc can be found on the Facebook Audio 360 website at:
https://facebook360.fb.com/spatial-workstation/

Alternative steps for encoding manually

1. Create a WAV file with the audio format they need (Eg 9 channels ambisonics with 2
channels of head-locked audio will require a 11 channel WAV file with the 2
head-locked channels at the end)

2. Use Opus tools, as described here to convert the WAV file to Opus:
https://opus-codec.org/downloads/
https://facebookincubator.github.io/facebook-360-spatial-workstation/Documentation/

17 /66

https://facebook360.fb.com/spatial-workstation/
https://opus-codec.org/downloads/
https://facebookincubator.github.io/facebook-360-spatial-workstation/Documentation/SDK/Audio360_SDK_GettingStarted.html#encoding-opus-files

SDK/Audio360 SDK GettingStarted.html#encoding-opus-files

3. Use ffmpeg to mux this opus file into the video container (ensure that the video file
doesn’t have any audio first):
ffmpeg -i audio.opus video.mp4 -c:a copy -c:v copy audio_video.mkv

4. In AVPro Video specify the required channel map

Converting existing ambisonic videos

It is also possible to convert existing ambisonic videos so they are compatible. For example
if you have an existing MP4 file with 4-channel 1st order ambisonic audio, then it is possible
to convert this into the above format (MKV container with Opus audio) using a tool like
FFMPEG. Simple put the following command in a .BAT file and then drag your MP4 into the
batch file:

ffmpeg -y -i input.mp4 -c:v copy -acodec libopus -mapping_family 255 output.mkv

This should then generate an MKV file that you can play with AVPro Video. All that remains
is to set the channel mapping in the MediaPlayer component to AMBIX_4.

4.4.2 Audio Redirection

Currently only the Windows plugin has support for audio manipulation beyond the standard
volume and stereo panning.

Some VR systems such as the Oculus Rift and HTC Vive have their own audio output device
and one needs to redirect audio to these devices instead of the system default audio device.
Unity does this automatically for its internal audio, but AVPro Video renders to the system
default audio device.

This issue can be solved by either using the AudioOutput component (see next section).
This component redirects the audio to be rendered by Unity and so it goes to the correct
device. AudioOutput requires that the Media Foundation video API be used, so if you need
to use the DirectShow API you can specify the name of the output device manually in the
field “Force Audio Output Device”:

18 /66

https://facebookincubator.github.io/facebook-360-spatial-workstation/Documentation/SDK/Audio360_SDK_GettingStarted.html#encoding-opus-files

Platform Specific

Windows

Owverride Path

Direct Shaw

Rift Audio

The device name to use can be retrieved from the VR API or hard coded. For Oculus Rift
the name is usually “Rift Audio” or “Headphones (Rift Audio)” and for HTC Vive it is “HTC
VIVE USB Audio”. The Facebook Audio 360 audio output option on Windows also allows
you to specify a specific audio output device name, but this requires that the your audio is
encoded with the Opus codec.

4.4.3 Audio Spatialisation

Audio needs to rotate as the user moves their head in the virtual world. This can be achieve
by using the AudioOutput component which redirects the audio from the video into Unity (via
Unity’s AudioL.istener).

Multiple
K. MediaPlayer-Bunny (MediaP ©

Ewverything

o ¥ Audio Source %,

AudioClip Mone (Audio Clip) @

Mone (Audio Mixer Group) o]

This component should be stacked above its required AudioSource component.

AudioOutput requires that the video API is set to Media Foundation and that the “Use Unity
Audio” tickbox is selected.

19/66

Platfarm Specific

Windows

Cverride Path

Freferred Video API | Media Foundation

Generate Texture Mi

Media Foundation Options
coding &

Lse Unity Audio

Stereo

For proper 3D audio placement you will also need to add a spatialiser plugin to the Unity
Audio Settings screen (in Unity 5.4 and above) and tick the “spatialize” tickbox on the Audio
Source. Multiple instances of AudioOutput component can be created, each one outputting
a different audio channel from a different world position.

If Unity Audio is enabled but the Stereo checkbox is not selected, AVProVideo will try to
detect how many channels the video has, and send to Unity as many channels as
requested. To get all audio channels, make sure that the default speaker mode in the Unity
Audio Settings supports enough channels, and ensure that the OS audio sound settings are
in the correct speaker mode (otherwise Unity will just default to the maximum number of
supported channels). If the Stereo box is checked, the audio will get resampled to 2
channels.

If you wish to only get specific channels from the video, you can choose to mask the
channels using the AudioOutput component.

4.4.4 Channel Remapping

B, ¥ Audio Output (Script)
Script ¥ AudioOutput
o Dutput Mode | Multiple

Media Player None (Media Player)

The AudioOutput component has the ability to route different audio channels from the media
to different physical channels. For best results make sure your video only has mono audio.
The audio will then get duplicated to the other channels.

20/66

4.5 Augmented / Virtual Reality Notes

So far we have tested AVPro Video with:
e GearVR

Google Cardboard

Google Daydream

Oculus Rift

HTC Vive

Microsoft Hololens

VR is still very new and you should always check for the latest recommended installation
steps when creating your project. We found a lot of out of date setup instructions on the
net.

AVPro Video supports 4K MP4 playback for creating 360 degree experiences. Stereo 4K
videos in both top-bottom and side-by-side formats are also supported. If you're using
Windows 10 and have an Nvidia Geforce 1000 series (eg 1070) you can display 8K H.265
videos (requires 64-bit build).

See the FAQ for tips to achieve high resolution video playback for VR.

For software decoders reducing the complexity of the encoded video will give the decoding
engine a much easier time and could result in higher frames rates and lower CPU/GPU
usage. Possible encoding tweaks include:

Use the lowest profile level possible
Don’t use too many reference frames
Don’t use too many b-frames
Disable CABAC

Use the slices option (eg -slices 4)

4.5.1 Stereo VR

AVPro Video supports stereoscopic videos in the top-bottom and left-right formats. You can
set the stereo packing format of your video in the Media Properties panel:

21/66

Media Properties

Texture
Filter Bilinear

Clamp

Alpha
Packing
Stereo
Top Bottom
Debug Eye Tint

Global Settings

Now when using the InsideSphere shader on a mesh it will automatically map the right part
of the video to each eye. See the “Demo_360SphereVideo” scene for an example of how
this works.

Optionally you can manually set the material properties. The included shader
“InsideSphere.shader” allows you to easily set what format your video is in via a drop-down
in the material:

Mone

Top_Bottom
Left_Right

Select “Stereo Debug Tinting” to colour the left and right eyes different colours so you can be
sure the stereo is working.

NOTE: Be sure to add the "UpdateStereoMaterial” component script to your scene when
using this material and a stereo video. Often stereo VR requires 2 cameras, each set to a
different layer mask and 2 spheres also set to a different mask. AVPro Video doesn’t require
this and just uses your normal single camera and single sphere.

NOTE: If you're playing stereo videos on Windows and the stereo isn’t appearing properly,
please read our FAQ #8.

An example of how to pack 2 videos together into a left-right stereo packed layout using
FFMPEG:

22 /66

ffmpeg -1 left.mp4 -vf "[in] pad=2*iw:ih [left]; movie=right.mp4
[right];[Lleft][right] overlay=main _w/2:0 [out]" stereo.mp4

4.5.2 Android OES playback path

For Android there is a special playback option called “Use Fast OES Path”. This option
caters especially for VR where users are trying to get the highest possible frame rate and
resolution out of the device (without it overheating at the same time). The option is
available in the Platform Specific section of the MediaPlayer component:

Platform Specific

Android

Owerride Path

File Offset

The OES path is not enabled by default because it requires some special care to be taken
and can be tricky for beginners. When this option is enabled the Android GPU returns
special OES textures (see EGL extension OES_EGL_image_external) that are hardware
specific. Unfortunately Unity isn’t able to use these textures directly, so you can’t just map
them to a material or Ul. To use the texture a GLSL shader must be used. Unfortunately
Unity’s GLSL support isn’'t as good as its CG shader support so again this makes things
more tricky. The GLSL compiler only happens on the device (not inside Unity) so errors in
the shader can be difficult to debug.

We have included a version of the VR sphere shader that supports stereo videos as an
example. Hopefully in the future we can improve the integration of these shaders so they
aren’t such special cases. This playback path is much faster though, so is definitely worth
exploring. Note that for VR stereo rendering, OES only currently supports multi-pass
rendering path, and not single-pass or single-pass instanced.

For the sphere demo scene, simply change the shader on the sphere mesh material to be

one of the “VR” “OES” ones and tick the “Use Fast OES Path” on the MediaPlayer
component.

4.5.3 i0OS YCbCr playback path

For iOS and tvOS we have added support for YCbCr textures which results in memory
saving compared to standard RGBA32 textures. This option is enabled by default but can

23 /66

be disabled on the MediaPlayer here:

Flatfarm Specific

Cwerride Path

This option is ideal for memory saving which is especially important when targeting low-end
devices (with 1GB RAM) and when playing back very high resolution video, such as 4K for
VR content. Improved performance may also be experienced using this option. The
DisplayIMGUI and DisplayUGUI components automatically detect this and switch to a
suitable shader. ApplyToMesh/ApplyToMaterial also detect this setting and tries to set up the
shader on the material to the correct settings, however it requires the shader to have the
correct properties. The AVPro Video shaders support this, so if you want to use this on a
mesh then make sure you’re using these shaders.

4.6 Hap Codec Notes

The Hap video codec is natively supported by AVPro Video on certain platforms and has the
following benefits:

Very low CPU usage

GPU decompression

Low memory usage

Supports very high resolutions

Supports alpha channel transparency

The main down side is:
e \ery large files

AVI and MOV containers can both be used however we recommend the MOV container.
Hap is only supported on Windows and Mac OS X platforms.

4.6.1 Windows Support

Hap, Hap Alpha, HapQ and HapQ Alpha are supported. Hap currently requires the
“DirectShow” video API to be selected:

24 /66

Platform Specific

Windows

Owerride Path

Direct Show

Force Audio Dutput Devic

4.6.2 macOS Support

Hap, Hap Alpha, HapQ and HapQ Alpha are supported.

4.6.3 Encoding

You can download the QuickTime codec for Windows and macOS here:
https://github.com/Vidvox/hap-gt-codec/releases

This codec can be used with QuickTime Pro or any other software that supports QuickTime
codecs such as Adobe After Effects and Adobe Premiere.

Alternatively you can use a recent build of FFMPEG with the following command-lines:

ffmpeg -i input.mov -vcodec hap -format hap output-hap.mov
ffmpeg -i input.mov -vcodec hap -format hap_ alpha output-hap.mov
ffmpeg -i input.mov -vcodec hap -format hap g output-hap.mov

Notes:

e You can also add the “-chunks 4” option which will encode each frame into 4 chunks
so the decoding work can be split across multiple threads, resulting in faster
decoding as long as the disk can keep up.

Width and height must be multiple of a 4.

Hap Alpha requires straight not pre-multipled alpha.

Sadly ffmpeg doesn’t yet support the HapQ Alpha format.

We don’t support Hap Q Alpha variant in Windows when using the legacy D3D9
graphics API

4.7 Transparency Notes

Not many video codecs have native support for transparency / alpha channels. Formats
supported by some platforms of AVPro Video are:

e Hap Alpha

25/66

https://github.com/Vidvox/hap-qt-codec/releases

471 A

o Great support on Windows and Mac OS X. Fast and low overhead format,
though file size can get large depending on the content. Currently this is the
format we recommend for transparent video.

Hap Q Alpha

o Great support on Windows and Mac OS X. Slightly higher quality and file size

compared to Hap Alpha.
Uncompressed RGBA
Uncompressed YUVA

o Uncompressed isn’t ideal for file size or disk bandwidth but can still be used

as a fallback

ProRes 4444
o Best supportis on Mac OS X. Files are huge.
VP6

o Legacy format. We support it only via 3rd party DirectShow plugins for
Windows (eg LAV Filters)

Ipha Packing

Alternatively you can encode your videos in video formats that don’t support an alpha

channe
left-righ

| by packing the alpha channel into the same frame. You can double the width for a
t packing layout, or double the height for a top-bottom packing layout. This packing

could be created in software such as AfterEffects, or the command-line ffmpeg tool can be

used.

The packing format is set in the “Media Properties” panel of the AVPro Video

MediaPlayer component:

Textu
Filter

Alpha

FPackin

Media Properties
re
Bilinear

Clamp

q Mane

Stereo

Debug

Tao p Bottom
Eye Tint

Global Settings

Here we show two examples using ffmpeg to convert a source video containing a

transpa

rency/alpha channel into an alpha packed format:

Left-right alpha packing:

ffmpeg
overla

-i %1 -vf "split [a], pad=iw*2:ih [b], [a] alphaextract, [Db]
y=w" -y %1.mp4

26 /66

Top-bottom alpha packing:

ffmpeg -1 %1 -vf "split [a], pad=iw:ih*2 [b], [a] alphaextract, [b]
overlay=0:h" -y $1-tb.mp4

27 /66

4.8 Hardware Decoding

AVPro Video supports hardware decoding on most platforms for optimal performance.
WebGL, Windows 8.1, Windows 10, macOS, tvOS, iOS and Android all default to hardware
decoding when possible. When playing back multiple videos simultaneously one must be
careful not to exceed the number of videos that the hardware can play back smoothly. We

have tried to collect information about the limits of specific hardware.

4.8.1 NVidia

NVidia GPU’s use a technology called “Purevideo” or “NVDec” to off-load decoding from the
CPU. More information can be found here:
https://en.wikipedia.org/wiki/Nvidia_PureVideo#Nvidia_VDPAU_Feature_ Sets

Some NVidia Purevideo capabilities:

KEPLER (GK107,
GK104)

MAXWELL 1
(GM107, GM204,
GM200)

MAXWELL 2
(GM206)

PASCAL (GP100)

MPEG-2, MPEG-4,
H.264

MPEG-2, MPEG-4,
H.264, HEVC with
CUDA acceleration

MPEG-2, MPEG-4,
H.264 HEVC/H.265
fully in hardware

MPEG-2, MPEG-4,
H.264 HEVC/H.265
fully in hardware

4K@30

H.264: ~200 fps at H.264: ~540 fps at H.264: ~540 fps at ?
1080p; 1 stream of 1080p 4 streams of | 1080p 4 streams of
4K@30 4K@30 4K@30

H.265: Not H.265: Not H.265: ~500 fps at ?
supported supported 1080p 4 streams of

(table adapted from presentation “HIGH PERFORMANCE VIDEO ENCODING WITH NVIDIA GPUS”)

GPU MPEG-2 VC-1 H.264/ H.265/ VP8 VP9
Architect AVCHD HEVC
ure
Fermi (GF1xx) | Maximum Maximum Maximum Unsupported Unsupported Unsupported
Resolution: Resolution: Resolution:
4080x4080 2048x1024 4096x4096
1024x2048 Profile:
Baseline,
Main, High
profile up to
Level 4.1
Kepler Maximum Maximum Maximum Unsupported Unsupported Unsupported
(GK1xx) Resolution: Resolution: Resolution:
4080x4080 2048x1024 4096x4096
1024x2048 Profile: Main,

28/66

https://en.wikipedia.org/wiki/Nvidia_PureVideo#Nvidia_VDPAU_Feature_Sets

High profile up
to Level 4.1
Maxwell Gen Maximum Maximum Maximum Unsupported Unsupported Unsupported
1 (GM10x) Resolution: Resolution: Resolution:
4080x4080 2048x1024 4096x4096
1024x2048 Profile:
Baseline,
Main, High
profile up to
Level 5.1
Maxwell Gen Maximum Maximum Maximum Unsupported Maximum Unsupported
2 (GM20x) Resolution: Resolution: Resolution: Resolution:
4080x4080 2048x1024 4096x4096 4096x4096
1024x2048 Profile:
Max bitrate: Baseline,
60Mbps Main, High
profile up to
Level 5.1
Maxwell Gen Maximum Maximum Maximum Maximum Maximum Maximum
2 (GM206) Resolution: Resolution: Resolution: Resolution: Resolution: Resolution:
4080x4080 2048x1024 4096x4096 4096x2304 4096x4096 4096x2304
1024x2048 Profile: Profile: Main Profile: Profile
Interlaced Baseline, profile up to 0
Main, High Level 5.1
profile up to
Level 5.1
Pascal Maximum Maximum Maximum Maximum Maximum Maximum
(GP100) Resolution: Resolution: Resolution: Resolution: Resolution: Resolution
4080x4080 2048x1024 4096x4096 4096x4096 4096x4096 4096x4096
1024x2048 Profile: Profile: Main Profile: Profile
Baseline, profile up to 0
Main, High Level 5.1
profile up to
Level 5.1
Pascal Maximum Maximum Maximum Maximum Supported2 Maximum
(GP10x) Resolution: Resolution: Resolution: Resolution: Maximum Resolution
4080x4080 2048x1024 4096x4096 8192x8192 Resolution: 8192x8192
1024x2048 Profile: Profile: Main 4096x4096 Profile: Profile
Baseline, profile up to 0
Main, High Level 5.1
profile up to
Level 5.1
(Table adapted from Nvidia Video Decoder Interface documentation:
https:/developer.nvidia.com/nvdec-programming-guide)
4.8.2 AMD
AMD UVD

https://en.wikipedia.org/wiki/Unified Video Decoder

UVD Version Hardware Code Names
uUvD 1.0 RV610, RV630, RV670, RV620, RV635
uvD 2.0 RS780, RS880, RV770

29/66

https://developer.nvidia.com/nvdec-programming-guide
https://en.wikipedia.org/wiki/Unified_Video_Decoder

UVD 2.2 RV710, RV730, RV740
UVvD 2.3 CEDAR, REDWOOD, JUNIPER, CYPRESS
uvD 3.0 PALM (Wrestler/Ontario), SUMO (Llano), SUMO2 (Llano
UVD 3.1 BARTS, TURKS, CAICOS, CAYMAN
UVvD 3.2 ARUBA (Trinity/Richland), TAHITI
UVvD 4.0 CAPE VERDE, PITCAIRN, OLAND
UVD 4.2 KAVERI, KABINI, MULLINS, BONAIRE, HAWAII
UvD 5.0 TONGA
uVvD 6.0 CARRIZO, FIJ
UVvD 6.2 STONEY
UVvD 6.3 POLARIS10, POLARIS11, POLARIS12
(table adapted from X.org RadeonFeature wiki:
hitps://www.x.org/wiki/RadeonFeature/#index8h2)
uvD MPEG 2 MPEG 4 MPEG-4 HEVC | Max Size | Notes
Version AVC/VC1
uvD 1.0 No No Yes No 2K
uvD 2.0 No No Yes No 2K
UvD 2.2 No No Yes No 2K
uvD 2.3 No No Yes No 2K
uvD 3.0 Yes Yes Yes No 2K
uvD 3.1 Yes Yes Yes No 2K
uvD 3.2 Yes Yes Yes No 2K
UvD 4.0 Yes Yes Yes No 2K
UVvD 4.2 Yes Yes Yes No 2K
uUvD 5.0 Yes Yes Yes No 4K
UvD 6.0 Yes Yes Yes Yes 4K
UvD 6.2 Yes Yes Yes Yes 4K Supports 10bit
UvD 6.3 Yes Yes Yes Yes 4K Supports 10bit

30/66

https://www.x.org/wiki/RadeonFeature/#index8h2

(table adapted from X.org RadeonFeature wiki:

_ o .)
4.8.3 Intel
Intel’s Quick Sync technology is a dedicated video decoder hardware built into the CPU.

Intel Kaby Lake supports H.265 10-bit decoding!

4.9 Multi-GPU SLI / CrossFire Notes

Multiple GPU’s are often used to accelerate high-end rendering but it brings with it some
subtle challenges for video playback. Here we write some notes about our experience using
Nvidia SLI on Windows (specifically Windows 8.1 with dual Nvidia M6000 cards).

Using Alternate Frame Rendering SLI (AFR SLI) can cause stuttering when using the Media
Foundation hardware decoding because only one GPU is doing the decoding and then it
must pass the frames back to the other GPU which is a slow operation and defeats the
purpose of SLI. One option here is to disable GPU decoding in AVPro Video, which is fine
for lower resolution videos, but often the CPU just isn’t fast enough for very high resolution
content. AFR can also suffer from so called “micro stutters” caused by each GPU handling
the flip presentation independently which isn’t ideal for video playback on large video walls.

Another option is to use the cards in “SLI VR” mode ... To be continued..

4.10 Subtitle Notes

AVPro Video supports external subtitles in the SRT format. Subtitles internal to media files
are not yet supported. See the subtitle demo scene to see how to use subtitles.

31/66

https://www.x.org/wiki/RadeonFeature/#index8h2

4.11 DRM / Encryption Notes

DRM support is currently not a key feature of AVPro Video, but we aim to improve support in
the future. DRM that we know works with the plugin includes:

e Android
o HLS with AES-128 clear-key (make sure your TS segments are 188 bytes
aligned for maximum Android compatibility)

o We have a file offset feature which allows you to access files hidden within a
file at an offset. Not strictly DRM but it can be used as a quick way to hide
video files within other data

m In Windows you can easily append your video to a dummy video file
with the following command:

copy /b DummyVideo.mp4 + %1 %~n1-hidden.mp4

o Custom HTTP header fields can be specified which can help with server side
validation

e macOS &i0S & tvOS
o HLS with AES-128 clear-key, direct key and key request using an auth token
in the HTTP header (“Authorization” field). More information about HLS
encryption can be read in the RFC here:
https://tools.ietf.org/html/draft-pantos-http-live-streaming-23

o Custom HTTP header fields can be specified which can help with server side
validation

*DRM schemes Fairplay, Widevine, PlayReady etc are not yet supported.

4.11.1 HLS Decryption

On the Apple platforms (macQOS, iOS and tvOS) we support HLS streams encoded with AES
encryption. Key retrieval from a server URL usually requires an authentication token, which
can be specified using the method SetKeyServerAuthToken(string), or this can be ignored if
your key retrieval server doesn’t require any authentication (clear-key). The auth token is a
string that is inserted into the “Authorization” HTTP field when retrieving the decryption key
from the server URL specified in the HLS manifest.

32/66

https://tools.ietf.org/html/draft-pantos-http-live-streaming-23

We also added some functionality to override the key URL and the to specify the key data
directly. SetDecryptionKey(byte[]) and SetDecryptionKeyBase64(string) can be used to
specify the key directly. Using this will bypass any server key retrieval.
SetKeyServerURL(string) can be used to override the key retrieval URL. Both of these are
useful for debugging.

These options can also be specified in the MediaPlayer inspector Ul (in the Platform Specific
section), and in the PlatformOptions properties, eg mediaPlayer.PlatformOptionsIOS

4.12 Video Capture Notes

Global Settings
Current Platform

BETA

TimeScale Support

Performance

Disable Debug GUI [(in builds anly)

To make a non-realtime video capture of your Unity scenes which include videos, requires
the video playback to slow down or speed up to match the video capture rate. AVPro Video
supports this through the “TimeScale Support” option which is found in the Global Settings
panel of the Media Player component. This means you can create high quality renders
running at 1fps to produce a smooth 60fps video, and any videos in your scene will play
back at the correct rate for the recording. Audio is not supported though when using this
option (as is the case in Unity itself).

4.13 Seeking / Playback Rate Notes

Most videos are optimally encoded for the main use case: normal forward playback with
inaccurate seeking.

If you want to start changing the playback rate, play in reverse or have frame accurate
seeking then you may run into issues where the playback becomes extremely slow or the
seeking is not accurate. There are several reasons for this, but it mostly is related to how
the video is encoded and specifically the key-frame distribution. There are also some
platform differences to consider.

4.13.1 Video Codecs and Encoding

Codecs such as H.264 and H.265 generally compress video frames so that they depend on
data included with previously decoded frames. These are called P and B frames and
seeking to one of these is computationally expensive as in order to display them the decoder
must first decode the other frames that they depend on. The other type of frame is called a
key-frame or I-frame and these frames can be decoded immediately because they don’t
depend on any other frames. Compressing using P And B frames is known as temporal

33/66

compression and isn’t ideal for accurate random seeking or playback rate changes.

For the best results you would to encode your video with only key-frames, as then you can
seek accurately and quickly anywhere in the video. This is possible, but increases the file
size dramatically. Using FFMPEG you can encode a video to use key-frames only using the
“-g 1” option. Another option would be to use a codec that only supports key-frames, such
as Hap or ProRes - but again these result in large file sizes and limited GPU decoding
capabilities.

In most codec with temporal compression the key-frames are spaced every 250 frames.
Some platforms can only seek to the key-frames (see table below), while others can do
accurate seeking but this can be very slow if the distances between key-frames is too large.
Try reducing the key-frame distance for faster seeking. You can also reduce the decoder
complexity by encoding with a fastdecode tuning option.

4.13.2 Playback Rate

Generally we recommend these rates:
0.25,0.5,1.0,1.25,1.5,1.75, 2.0

Going up to 4.0 might be possible depending on your platform, machine specs and the
codec used. Increasing playback rate usually places more demand on the video decoder
and also on the disk/network source, and these limit how much you can increase the
playback rate by.

Using negative values isn’t generally recommended as it isn’t as well supported, but if you
do have to use a negative rate then also try keeping the numbers small such as:
-0.25,-0.5, -1.0

Audio also may or may not play when changing the playback rate - this depends on the
platform (see table below).

One safe alternative to adjusting rate is to pause the video and fast seek to simulate a
change in playback rate. This approach would work on all platforms.

Video encoding can also help the performance of a change in playback rate. Videos with
more key-frames (or ideally all key-frames) and with less complex encoding (eg no B frames,
CABAC disabled etc) will work better. Alternatively a key-frame-only codec could be used,
such as Hap.

4.13.3 Platform Differences

Seeking:
Platform and Fast Inaccurate Slow Accurate Adjust
Video API Keyframe Seeking | Frame Seeking Playback Rate

34 /66

Android Yes API 26 and above API 6 and above

MediaPlayer API

Android Yes Yes Yes

ExoPlayer API

Windows Yes Yes Yes

Media Foundation

Windows Yes Depends on the Yes but not negative

DirectShow codec

UWP Yes Yes Yes

Media Foundation

macOS Yes Yes Yes If source
supports it

iOS & tvOS Yes Yes Yes If source
supports it

webGL Yes Varies Yes but not negative

Playback Rate:

Platform and Adjust

Video API Playback Rate Audio Plays Negative Rates

Android API 23 and above Yes ?

MediaPlayer API

Android Yes Yes ?

ExoPlayer API

Windows Yes Depends on codec Yes

Media Foundation

Windows Yes No No

DirectShow

UWP Yes Depends on codec Yes

Media Foundation

macOS Yes Yes Depends on media
source

iOS & tvOS Yes Yes Depends on media
source

webGL Yes Depends on No

browser

35/66

5. Quick Start Examples

5.1 Quick Start: Fastest Start for Unity Experts

1. Put video files in the StreamingAssets folder

2. Use the MediaPlayer script to play your video (set Video Path to the file name of your
video file).

3. Use one of the display scripts to display your video (eg DisplayIMGUI, DisplayUGUI,
ApplytoMaterial)

5.2 Quick Start: Fullscreen Video Player using Prefabs

AVPro Video includes a number of example prefabs you can use to easily add video
playback to your project. The following steps will create an application that plays back a
fullscreen video:

1. Create a new Unity project

2. Import the AVProVideo package

3. From the AVPro/Prefabs folder in the Project window, drag the FullscreenVideo
prefab to your Hierarchy window

Project . = Hierarchy - © Inspector

v Vv FullscreenVidec
= AVProVvide Main Camera - Tag " Untagged
8 Dem FullscreenVideo Prefal Belect
B Material
Transform

Position X 0 0
Rotation X 0 Yo
ale 1 Y 1

8 prefal

® 360Spherevide

® Fullscreenvide

¥ Media Player (Script)
ript M MediaPlaye
ideo Path
Aut Jpen
Auto Start
Loop

lume

Muted

Debug Gui

¥ Display IMGUI (Script) W &,
ript @ DisplayIMGUI

Media Player B FullscreenVideo (I «
ale Mode Scale To Fit

Color

Alpha Blend

Full reen

Depth

Component

4. Create a folder called StreamingAssets in your Project window and copy your video

36 /66

file (say MP4 file) into that folder

5. Enter the file name (including extension) into the Video Path field in the MediaPlayer
component (eg myvideo.mp4)

6. Build and deploy your application, the video will be displayed fullscreen

The DisplayIMGUI component script is just one of the components for displaying video. It
uses the legacy Unity IMGUI system which always renders on top of everything else. Try
using the DisplayBackground or DisplayUGUI components for more control if you don’t want
your video to be on top.

5.3 Quick Start: 3D Mesh Video Player using Components

AVPro Video includes a number of easy to use script components you can add to your
scene. In this example we show how to use the components to play a video onto a material
which is applied to a 3D model in the scene.

1. Create a new Unity project

2. Import the AVProVideo package

3. Create a new GameObiject from the “GameObject > AVPro Video > Media Player”
menu command

4. Click the “Add Component” button and add “AVPro Video > Apply To Mesh”

5. Drag the Media Player script to the “Media” field in the Apply To Mesh script, this tells
the Apply to Mesh script which media player to use

6. Create a sphere via the “GameObject > 3D Object > Sphere” menu command

7. Drag the Mesh Renderer component to the “Mesh” field in the Apply To Mesh script,
this tells the Apply to Mesh script which mesh to use

= Hierarch - © Inspector

reate L o v VideoPlayel
- -

Main Camera agged
VideoPlayer

- Transform
= Matenal phere

== Position Y

88 Prefal : .

— ‘ ! Rotation L r o
I

- ript | 1
85 Plugin: "

8 Resource v Media Player (Script)
B8 StreamingAsset ript | MediaPlayer

® MyvideoMaterial
' ' ideo Path myvideo.mp4

Aut)pen
Aut tart
Loop

lume
Muted
Debug Gui
¥ Apply To Material (Script) ™ %,
ript ® ApplyToMaterial
Material ® MyVideoMaterial
Texture Property Na
Media M VideoPlayer (Mec ©
Default Texture None (Texture 2D

Add Component

8. Create a folder called StreamingAssets in your Project window and copy your video

37/66

file (say MP4 file) into that folder

9. Enter the file name (including extension) into the Video Path field in the MediaPlayer
component (eg myvideo.mp4)
10. Build and deploy your application, the video will be displayed on your 3D sphere

38 /66

6. Usage

6.1 Getting Started

The easiest way to get started is to look at the included demos and see what script
components have been used. For video playback you need 3 things in your scene:

1. The video file to play:

Create a “StreamingAssets” folder in your Project window
Copy your video file (usually MP4 file, but consult the list of supported formats for
your platform below) to the StreamingAssets folder

2. A MediaPlayer script to load and play the video:

Create a GameObject and add the MediaPlayer script to it
Set the Video Path field to the name of your video file (e.g. myvideo.mp4)

3. A script to display the video:

Decide how and where you want your video file to appear. There are a number of
different display component scripts included for different usage scenarios. If you
want to display the video on top of everything in your scene just add the
DisplaylMGUI script to a GameObiject in your scene and set the Media Player field
your MediaPlayer component. Other display components work similarly.

6.2 Unsupported Platform Fallback

AVPro Video is designed to still function even on platforms that aren’t natively supported.
Instead of displaying the actual video though, a dummy 10 second long “AVPro” visual is
shown. All of the video controls should still work. For example if you are running your editor
in Linux the dummy video player will appear in the editor and the real video will appear when
you deploy to supported platforms. If you deploy to an unsupported platform such as
Samsung TV you will also see the dummy video player. The code is easily extendable to
add custom video players for any unsupported platform.

6.3. Components

Included are a number of components to make this asset easy to use. The components are
located in the AVProVideo/Scripts/Components folder or you can add them from the
Components menu:

39/66

Edit Assets GameObject | Component AVPro Video Asset Store Tools Win
Add... Ctrl+Shift+A
Mesh
Effects
Physics
Physics 2D
Navigation
Audio
Rendering
Layout

Miscellanecus
AVPro Video Media Player

Scripts Display Background

Display IMGUI
Display uGUI

Event

ul

Woow W W v v W W v w w w

Apply Te Material
Apply To Mesh

Audio OQutput
Cubemap Cube (VR)
Update Sterec Material

6.3.1 Media Player Component

Startup
Auto Open

Aut tart
Playback

Other

Persistent

This is the core component for playing media. This component only handles the loading and
playback of media and doesn’t handle how it is displayed. Use the display script
components to control how and where the video is displayed. Fields are:

40/66

e Video Location
o Where to look for the file specified in the Video Path below. This can be an
absolute path/URL, or relative to one of the Unity folders. The
StreamingAssets folder is the easiest to use. Options are:
m Absolute or URL
e This is an absolute path on your device, or an http URL
m Relative to Project Folder
e The root folder is the folder above your Assets folder
m Relative to Streaming Assets Folder
e The root folder is /Assets/StreamingAssets
m Relative to Data Folder
e The root folder is /Assets
e Unity manual has more information:
http://docs.unity3d.com/ScriptReference/Application-dataPath.
html
m Relative to Persistent Data Folder
e Unity manual has more information:
http://docs.unity3d.com/ScriptReference/Application-persistent
DataPath.html

e Video Path
o The file path to the video in the StreamingAssets folder (e.g. myvideo.mp4 or
AndroidVideos/myvideo.mp4 if you want to use a subfolder)
e Auto Open
o Whether to open the file when this component is enabled/starts
e Auto Start
o Whether to play the video once a video is opened
e Loop
o Whether to loop the video
e Playback Rate
o Sets a multiplier that affects video playback speed
o Please see section 4.13 notes about this

e Volume
o 0..1 range for audio volume
e Muted

o Whether the audio is muted
e Persistent
o Applies DontDestroyOnLoad to the object so that it survives scene/level loads
e Debug Gui
o Whether to display an overlay with statistics on the video playback - useful for
debugging
e Events
o This event can be hooked up to scripting functions which will get called when
a non-looping video completes playback. See the Events section below for
more details and a scripting example
e Visual
o Texture
Set the desired filtering and wrap mode for the final texture that the
frames are written to. Useful if you wish to tile your textures in a specific way.

41/66

http://docs.unity3d.com/ScriptReference/Application-dataPath.html
http://docs.unity3d.com/ScriptReference/Application-dataPath.html
http://docs.unity3d.com/ScriptReference/Application-persistentDataPath.html
http://docs.unity3d.com/ScriptReference/Application-persistentDataPath.html

o Transparency
m Set the pack mode used for transparency, where one half of the video
contains the colour data, and the other half contains the monochrome
alpha channel data
o Stereo
m Set the pack mode used for stereo, where one half of the video
contains the left eye data, and the other half contains the right eye
data
o Resampler
m The resampler helps smoothen out jitters in video playback caused by
unity and decoder vsync drift. The downsides to using it is that it uses
more processing power and GPU memory, and that it is out of sync for
videos with audio as it displays the video frames a couple of frames
later than the decoder.
m There are two modes in the resampler:
e POINT picks the closest frame in the buffer and displays it
e LINEAR picks the two frames directly before and after the
current display time, and displays the interpolated version of
the two based on how far away the current time is from both of
them
m Resample buffer size determines how many frames are stored in the
buffer. A larger buffer size uses more GPU memory as there are more
textures, but increases the chance that the desired frames will be
found in the buffer, which will allow for smoother playback. A larger
buffer size will also mean a larger delay between the video displayed
and the actual video on the decoder.
e Platform Specific
o These allow you to set a different options per platform, including setting a
different file path.
o Windows
m DirectShow options
e Preferred Filters - list the names of filters you want to force, eg
“LAV Video Decoder”, “Lav Splitter Source”, “Microsoft
DTV-DVD Video Decoder”

6.3.2 Display IMGUI Component

42 /66

B, ¥ Display IMGUI (Script) M 3,

Media Player K AVPro Video Medi ©

Height

This is the most basic component for displaying the video. It uses the legacy Unity IMGUI
system to display the video to the screen. IMGUI is always rendered on top of everything
else in the scene, so if you require your video to be rendered in 3D space or as part of the
uGUI system it’s better to use the other components. Fields are:

Media Player
o The media player to display
Display in Editor
o Whether to display the rectangle in the editor - useful for debugging
Scale Mode
o How to fit the video to the screen
Color
o The color to tint the video, including alpha transparency
Alpha Blend
o Whether the video texture controls transparency. Leaving this off for opaque
videos is a minor optimisation
Depth
o The IMGUI depth to display at. Use this to change the order of rendering with
other IMGUI scripts
Full Screen
o Whether to ignore the X, Y, Width, Height values and just use the whole
screen
X
o The normalised (0..1) x position
Y
o The normalised (0..1) y position
Width
o The normalised (0..1) width
Height
o The normalised (0..1) height

6.3.3 Display uGUI Component

43 /66

B, ¥ Display UGUI (Script)
Media Player ® AVPro Media Play: @

Default Texture

Mone (Material)

This component is used to display a video using Unity’s uGUI system. Field are:

e Media Player
o The media player to display
e Default Texture (optional)
o A texture to display while the video isn’t playing (while it is buffering for
example).
e No Default Display
o Will not show anything until there are frames available

e Color
o The color to tint, including alpha transparency
e Material

o Standard uGUI field, change this to one of the included materials when using
packed alpha or stereo videos
e UV Rect
o Standard uGUI field
e Set Native Size
o When the video loads will resize the RectTransform to the pixel dimensions of
the video
e Keep Aspect Ratio
o Whether to keep the correct aspect ratio or stretch to fill

6.3.4 Apply To Mesh Component

B, ¥ Apply To Mesh (Script)

This component takes the texture generated by the Media Player component and assigs it to
the texture slot of the material on a 3D Mesh. This is useful for playing videos on 3D

44/ 66

meshes. Field are:

e Offset
o The XY translation to apply to the texture
e Scale
o The XY scale to apply to the texture
e Mesh
o The mesh (renderer) to apply the texture to
e Media

o The media player
e Default Texture (optional)
o A texture to display while the video isn’t playing (while it is buffering for
example).
e Texture Property (optional)
o By default this script assigns to the main texture (_MainTex) but if you want to
assign to another slot you can put the name in here. If you're using the
Standard Shader and want the texture to drive the emissive property, set the
property name to “_EmissionMap”. You may also need to apply a dummy
texture to the emissive texture slot in the material to initialise it, and set the
emissive colour so it isn’t black.

6.3.5 Apply To Material Component

X 1 1

® VideoMappingMaterial

Media
Default Texture =xture Z0D) o]

This component takes the texture generated by the Media Player component and assigns it
to a texture slot in a Material. This is useful for playing videos on 3D meshes. Fields are:

o Offset

o The XY translation to apply to the texture
e Scale

o The XY scale to apply to the texture
e Material

o The material to apply the video texture to
e Texture Property Name (optional)
o By default this script assigns to the main texture (_MainTex) but if you want to
assign to another slot you can put the name in here. If you’re using the
Standard Shader and want the texture to drive the emissive property, set the
property name to “_EmissionMap”. You may also need to apply a dummy
texture to the emissive texture slot in the material to initialise it, and set the

45/66

emissive colour so it isn’t black.
e Media
o The media player
e Default Texture (optional)
o A texture to display while the video isn’t playing (while it is buffering for
example).

6.3.6 Cubemap Cube Component

B, ¥ Cubemap Cube (Script)

Material
Media Flayer

Expansion_coeff

This component generates a cube mesh that is suitable for 3:2 cubemap 360 VR videos.

Fields are:

e Material
o The material to apply to the cube. This is usually just a standard unlit
material.
e Media Player
o The media player that will have its video texture displayed on the cube
e Expansion_coeff
o The value used during enabling to pad the edges to the video to prevent
bilinear bleed artifacts. Defaultis 1.01.

6.3.7 Audio Output Component

B, ¥ Audio Output (Script) [2,

Media Player B AVPro Media Player (MediaPlayer ©

This component currently only supports the Windows platforms (UWP, Windows 8 and
above) and is used to pass audio from the Media Player to Unity. This allows audio
effects,3D placement and 360 VR spatialisers to be used. Fields are:

e Media Player
o The media player that will have its audio outputted via Unity

6.4 Scripting

46 /66

6.4.1 Namespace

All scripts in this plugin use the namespace RenderHeads.Media.AVProVideo so be sure to
add:

using RenderHeads.Media.AVProVideo;

to the top of your source files.

6.4.2 Media Player Scripting

Most scripting is likely to center around the MediaPlayer.cs script. This script handles the
loading, playback and updating of videos. The script exposes a number of interfaces related
to different use cases and can be found in Interfaces.cs

MediaPlayer exposes 3 main interfaces:
e Info Interface
o The IMedialnfo interface is exposed by the Info property
o This interface is used to access information about the media, eg:

MediaPlayer mp;
mp.Info.GetVideoWidth () ;

e Control Interface
o The IMediaControl interface is exposed by the Control property
o This interface is used to control playback, eg:

MediaPlayer mp;
mp.Control.Pause();

e TextureProducer interface
o The IMediaProducer interface is exposed by the TextureProducer property
o This interface is used to get information about how to display the current
texture and is used by the Display components, eg:

MediaPlayer mp;
Texture videoTexture = mp.TextureProducer.GetTexture()

The MediaPlayer script also has a number of methods for controlling loading of media:

e OpenVideoFromFile()
o Loads the video specified. Useful if you need manual control over when the
video is loaded
e CloseVideo()
o Closes the video, freeing memory

47 /66

6.4.3 Events

MediaPlayer currently has these events:

e MetaDataReady - Called when the width, height, duration etc data is available

e ReadyToPlay - Called when the video is loaded and ready to play

e Started - Called when the playback starts

e FirstFrameReady - Called when the first frame has been rendered. (NB: This event
currently doesn’t get fired for certain browsers in the WebGL build. This includes all
non-mozilla non-webkit browsers)

e FinishedPlaying - Called when a non-looping video has finished playing

e Closing - Called when the media is closing

e Error - Called when an error occurred, usually during loading

e SubtitleChanged - Called when the subtitles change

e Stalled - Called when media is stalled (eg. when lost connection to media stream)

e Unstalled - Called when media is resumed form a stalled state (eg. when lost

connection is re-established)

Scripting example:

// Add the event listener (can also do this via the editor GUI)
MediaPlayer mp;
mp.Events.AddListener (OnVideoEvent) ;

// Callback function to handle events
public void OnVideoEvent (MediaPlayer mp, MediaPlayerEvent.EventType et, ErrorCode
errorCode)
{
switch (et)
{
case MediaPlayerEvent.EventType.ReadyToPlay:
mp.Control.Play();
break;
case MediaPlayerEvent.EventType.FirstFrameReady:
Debug.Log ("First frame ready"):;
break;
case MediaPlayerEvent.EventType.FinishedPlaying:
mp.Control.Rewind () ;
break;

Debug.Log ("Event: " + et.ToString());

6.5 Platform Specific Scripting

6.5.1 Windows Store / UWP / Hololens

See the Demos/Scriptlets/NativeMediaOpen.cs script for details on how to load directly from
the native file system (eg from the Camera Roll)

6.6 Third-Party Integration

48 /66

6.6.1 PlayMaker Support

AVPro Video includes over 64 components (actions) for PlayMaker, the popular visual
scripting system created by Hutong Games. This makes AVPro Video much easier to use
for PlayMaker users. The actions can be found in the /Scripts/Support/PlayMaker folder

6.6.2 NGUI Support

AVPro Video includes basic support for NGUI, the popular Ul system from Tasharen
Entertainment. The ApplytoTextureWidgetNGUI component is used to set the AVPro Video
texture to an NGUI UlTexture widget.

49/66

AVProVidec

7. Asset Files 8 Demos
85 Material
7.1 Demos - i
e Demo_360SphereVideo.unity f‘ Demo_360SphereVideo
o Demo contains a video player that plays a 360 ;: E: :—ﬁl'?.}'”;" unashade
degree video using equirectangular(lat-long) € Demo_Mapping3D
mapping. S
o The video is applied to a sphere, inside of which 2 Demo VideoControl
is the main camera. Materials
o If the target device has a gyroscope then moving : ”r' sohereVide
the device around with rotate the camera to view ® BackaroundVideo
the video from different angles. For platforms ® Fullscreenvideo
without gyroscope the mouse/touch can be used i Scri ru.[---..f..r-.
to look around. ApplyToMaterial
o A special shader and script are used to allow a DisplayBackground
single camera to render in stereo on a VR Ej:i:: :Z:: ‘1::1}:'_-.:;1
headset. Click on the material to set whether it MediaPlayet
should display the video as monoscopic, stereo # Editor _
top-bottom or stereo left-right. SeplsyeniEa
e Demo_360CubeVideo.unity #s Internal
o Same as the sphere demo above, but using a S e s
cubemap 3x2 layout source video. Interfaces
e Demo_BackgroundShader.unity NullMediaPlaye:
o Basic demo that plays a video using the - ol Ll

background material which allows the video to @8 Android
appear behind all content. 108
e Demo_FrameExtract.unity e
o Shows go to read frames out of the video for StreamingAssets
saving to disk (jpg/png) or accessing pixel data.
e Demo_imGui.unity
o Basic demo that plays a video and uses the legacy IMGUI display component
to draw the video to the screen.
o Also has an audio clip to show audio-only media playback.
o Also has 3 different streaming URLs to demonstrate streaming.
o IMGUI is drawn on top of all other visual components.
e Demo_Mapping3D.unity
o Demo containing a video player and a 3D scene
o Some of the 3D models have the video mapped to them via the
ApplyToMaterial script
e Demo_Multiple.unity
o This demo allows you to programmatically multiple load videos and test
multiple videos playing at once. Display is via the AVPro Video uGUI
component
e Demo_uGUl.unity
o This demo shows how to display videos within the uGUI system. It uses the
DisplayUGUI component in the canvas hierarchy.
o It also uses a custom shader to overlay text with a video texture.

50 /66

e Demo_VideoControl.unity
o This demo shows how to query the video state and control playback

7.2 Prefabs

e 360SphereVideo.prefab
o Prefab containing a video player and mapping to a sphere. Useful for
playback of equirectangular 360 degree videos
e BackgroundVideo.prefab
o Prefab containing a video player and a quad model with a special background
material applied. This material makes the quad get drawn before everything
else so it appears in the background.
e FullscreenVideo.prefab
o Prefab controls a video player and the IMGUI display component for very
easy basic video playback creation

7.3 Scripts

e Components
o ApplyToMaterial.cs
m Applies the texture produced by the MediaPlayer component to a unity
material texture slot
o ApplyToMesh.cs
m Applies the texture produced by the MediaPlayer component to a
Untiy mesh (via MeshRenderer) by setting the mainTexture field of all
its materials
o CubemapCube.cs
m Generates a cube mesh that can be used for displaying a 3:2
cubemap packed video
o DisplayBackground.cs
m Displays the texture produced by the MediaPlayer component behind
all other content (not compatible with SkyBox)
o DisplayIMGUl.cs
m Displays the texture produced by the MediaPlayer component using
Unity’s legacy IMGUI system
o DisplayUGUIl.cs
m Displays the texture produced by the MediaPlayer component using
Unity’s new uGUI system
o MediaPlayer.cs
m The main script for loading and controlling an instance of video
playback
o UpdateStereoMaterial.cs
m A helper script for VR stereo rendering to update the camera position
variable in a spherical material to help work out which eye to render
o AudioOutput.cs
m Used to play audio from the media vis Unity’s sound system (currently
Windows only)
o ApplyToTextureWidgetNGUI.cs

51/66

m Applies the texture produced by the MediaPlayer component to an
NGUI Texture widget texture slot
e Editor
o DisplayUGUIEditor.cs
m The editor script that controls how the DisplayUGUI component is
rendered in the Inspector
o MediaPlayerEditor.cs
m The editor script that controls of the MediaPlayer component is
rendered in the Inspector
e Internal
o AndroidMediaPlayer.cs
m Android specific media player
o BaseMediaPlayer.cs
m Common base class for all platform media players
o Interfaces.cs
m Interfaces and events
o NullMediaPlayer.cs
m The fallback dummy media player for unsupported platforms
o OSXMediaPlayer.cs
m iOS, tvOS and macOS specific media player
o WebGLMediaPlayer.cs
m WebGL specific media player
o WindowsMediaPlayer.cs
m Windows specific media player

52 /66

8. Scripting Reference

AVPro Video is designed to be used mainly with the supplied drag and drop component but
there are always times when a bit of scripting is needed. The asset includes sample scenes
which give some examples of how to use scripting to control video playback, apply video
textures to materials etc which are useful to learn from. The full class reference is available
online here:

http://www.renderheads.com/content/docs/AVProVideoClassReference/

In this document we have included a simplified version of the highlights.

MediaPlayer class

The MediaPlayer class is the main class for video playback and is where video files are
specified and controlled. This class is mainly controlled via the Unity Inspector Ul and for
scripting through the interface properties it exposes.

Properties
e Events
o returns the MediaPlayerEvent class
e Info
o returns the IMedialnfo interface
e Control

o returns the IMediaControl interface
e TextureProducer
o returns the IMediaProducer interface

Methods
All of these methods use the interfaces exposed above and are just handy shortcuts

e void OpenVideoFromFile(FileLocation location, string path, bool autoPlay)
o Opens the video specified
e void CloseVideo()
o Closes the current video and frees up allocated memory
e void Play()
o Starts playback of the video
e void Pause()
o Pauses the video
e void Stop()
o Pauses the video
e void Rewind(bool pause)
o Rewinds the video with an option to pause it as well
e Texture2D ExtractFrame(Texture2D target, float timeSeconds, int timeoutMs)
o Extracts a frame from the specified time of the current video as a readable
Texture2D. This can then be used to save out the pixel data. The texture

53 /66

http://www.renderheads.com/content/docs/AVProVideoClassReference/

must be destroyed by the user. The texture can be passed in again via the
“target” parameter to reuse it.

IMedialnfo interface

This interface is used to query properties of the video
Methods

e float GetDurationMs();
o Returns the duration of the video in milliseconds
e int GetVideoWidth();
o Returns the width of the video in pixels
e int GetVideoHeight();
o Returns the height of the video in pixels
o float GetVideoFrameRate();
o Returns the frame rate of the video in frames per second
o float GetVideoDisplayRate();
o Returns the actual frame rate achieved by the video decoder
e bool HasVideo();
o Returns whether the media has visual tracks
e bool HasAudio();
o Returns whether the media has audio tracks
e int GetAudioTrackCount();
o Returns the number of audio tracks
e string GetPlayerDescription();
o Returns a string describing the internal playback mechanism

IMediaControl interface

This interface is used to control loading and playback of the video
Methods

e bool OpenVideoFromFile(string path);

o Starts loading the file from the specified path or URL. Returns false if any
error was encountered. This function is asynchronous so the video properties
will not be available immediately. This function shouldn’t be used, instead
use the MediaPlayer OpenVideoFromFile function.

e void CloseVideo();
o Closes the video and any resources allocated
e void SetLooping(bool looping);

o Sets whether the playback should loop or not. This can be changed while the

video is playing.
e bool CanPlay();
o Returns whether the video is in a playback state. Sometimes videos can take

54 /66

a few frames before they are ready to play.
void Play();
o Starts playback of the video
void Pause();
o Pause the video
void Stop();

o Stops the video (essentially the same as Pause)

bool IsPlaying();

o Returns whether the video is currently playing

bool IsPaused();

o Returns whether the video is currently paused

bool IsFinished();

o Returns whether the video has completed playback

bool IsLooping();

o Returns whether the video has been set to loop

bool IsBuffering();

o Returns whether a streaming video has stopped and is buffering. A buffering
video will resume after it has downloaded enough data.

void Rewind();

o Sets the current time to the beginning of the video

void Seek(float timeMs);

o Sets the current time to a specified value in milliseconds

void SeekFast(float timeMs);

o Sets the current time to a specified value in milliseconds but sacrifices
accuracy for speed. This is useful if you just want to jump forward/back in a
video but you don’t care about the accuracy.

bool IsSeeking();

o Returns whether the video is currently seeking. During seeking no new

frames are produced.
float GetCurrentTimeMs();

o Returns the current time (playback position) in milliseconds

void SetPlaybackRate(float rate);

o Sets the current playback rate. 1.0f is normal rate. Negative rates aren’t
supported on all platforms.

float GetPlaybackRate()

o Returns the current playback rate
void MuteAudio(bool mute)

o Sets the audio mute or not
void SetVolume(float volume)

o Sets the volume between 0.0 and 1.0
float GetVolume()

o Returns the volume level between 0.0 and 1.0
int GetCurrentAudioTrack()

o Returns the index of the currently enabled audio track
void SetAudioTrack(int index)

o Sets the index to select the audio track to enable exclusively

float GetBufferingProgress()

o Returns a value between 0.0 and 1.0 representing network buffering

55/66

e ErrorCode GetLastError()
o Returns an error code is an error occurred this frame

IMediaProducer interface

Methods

e Texture GetTexture();
o Returns a Unity Texture object if there is a texture available otherwise null is
returned.
e int GetTextureFrameCount();
o Returns the number of times the texture has been updated by the plugin.
This can be useful to know when the texture was updated as the value will
increment each time.
e long GetTextureTimeStamp();
o Returns the presentation time stamp of the current texture in 100-
nanosecond units. This is useful for accurate frame syncing.
e bool RequiresVerticalFlip();
o Some textures are decoded up-side-down and need to be vertically flipped
when displayed. This method returns whether the texture needs to be flipped
during display.

56 / 66

9. Supported Media Formats

In general the most common format that is supported are MP4 files with H.264 encoding for
video and AAC encoding for audio. This format is supported across all platforms though not
necessarily all bit-rates and profiles.

Container support:

Windows macOS iOS, tvOS | Android

Desktop Desktop
MP4 Yes Yes Yes Yes
MOV Yes Yes Yes No
AVI Yes No No No
MKV Yes in Windows | No No Yes

10 Android

5.0+

Webm Yes in Windows | No No Yes

10 - 1607

Anniversary and

above
ASF/ WMV Yes No No No
MP3 Yes Yes Yes Yes
WAV Yes Yes ? ?

Audio Codec support:

Windows macOS iOS, tvOS | Android

Desktop Desktop
AAC Yes Yes Yes Yes
MP3 Yes Yes Yes* Yes
FLAC Yes in Windows | Yes Yes Yes

10
AC3 Yes Yes Yes ?
WMA Yes No No No
MIDI Yes Yes Yes ?

57 /66

Vorbis No No No Yes
Opus Yes in Windows | No No Yes,
10 - 1607 Android
Anniversary and 5.0+
above
ALAC (Apple Lossless) No Yes Yes No
MLAW Yes Yes Yes No
ADPCM Yes Yes Yes No
Linear PCM Yes Yes Yes Yss
* audio files only
Video Codec support:
Windows macOS iOS, tvOS | Android
Desktop Desktop
HEVC / H.265 Yes in Windows | Yes in High | Yes iniOS | Yes
10 Sierra and 11 and
above above
H.264 Yes**** Yes Yes Yes
H.263 Yes No ? Yes
MJPEG Yes Yes Yes No
WMV Yes No No No
VP8 Yes* No No Yes
VP9 Yes* No No Yes
Hap Yes*** Yes No No
Hap Alpha Yes*™* Yes No No
Hap Q Yes*** Yes No No
Hap Q Alpha Yes*™* Yes No No
ProRes 422 No Yes No No
ProRes 4444 No Yes No No
DV Yes Yes in No No
Yosemite
and above
Lagarith Yes, with codec | No No No

58 /66

Uncompressed RGBA Yes Yes ? ?
Uncompressed YUV Yes ? ? ?
Uncompressed R10K No Yes in No No
Yosemite
and above
Uncompressed V210 ? Yes in No No
Yosemite
and above
Uncompressed 2VUY ? Yes in No No
Yosemite
and above

For Windows, other codecs can be played if the DirectShow mode is used and 3rd party
codecs are installed. We recommend LAV filters for this purpose as this adds support for
almost all codecs.

e *Yes, only in Windows 10 and only 4:2:0. Native VP9 support only comes in Yes in
Windows 10 1607 Anniversary Update and above, but it may be available before that
via Intel GPU drivers. If you use DirectShow and 3rd party filter then 4:4:4 can be
supported. Using Media Foundation no audio codecs (Vorbis or Opus) are supported
and will cause the video to fail to load if included.

*** Requires option “Force DirectShow” to be ticked
**** Older versions of Windows (Vista and XP) do not have support for H.264
decoding

e ****j0OS doesn’t support MP3 audio tracks in a video file, so best to use AAC instead

Cells with “?” are one’s we’re not sure about. We will do more testing and continue to
update this table. For more details on which codecs and what type of encoding is best, see
the per-platform details below.

9.1 Android

Android supports many media formats. For a complete list check the Android MediaPlayer
documentation here: https://developer.android.com/quide/appendix/media-formats.html and
the ExoPlayer documentation here:
https://google.github.io/ExoPlayer/supported-formats.html

HEVC (H.265) support was officially added in Android 5.0 (Lollipop) but only as a software
decoding implementation on older devices.

We have found that using GearVR on Samsung Galaxy S6 and S7 that H.265 codec works
best, with a resolution of 3840x1920 at 30fps, or 2048x2048 at 60fps.

A list of media-player related Android chipsets and which formats they support for hardware
decoding: http://kodi.wiki/view/Android_hardware

59 /66

https://developer.android.com/guide/appendix/media-formats.html
https://google.github.io/ExoPlayer/supported-formats.html
http://kodi.wiki/view/Android_hardware

9.2 i0S, tvOS and macOS

9.2.1i0S

Many media formats are supported by iOS including H.264. iOS 11 adds support for H.265
(HEVC). The iPhone 7 is the first device with the hardware to support H.265.

The iPhone5C is a low-powered mobile device and has a limitation that the videos must be
less than 2 megapixels in resolution.

iOS doesn’t support MP3 audio tracks in a video file, so best to use AAC instead.

4K videos should be avoided on iOS due to the devices having low memory in general.

AVPro Video does however have the YCbCr video decoding option (See Platform Specific
panel in MediaPlayer component), which can help play back these videos.

We recommend only using a single MediaPlayer instance and reusing it for all video loads.
The memory issue may be helped by encoding your videos with less reference frames but
we haven'’t tested this for sure.

It has proven difficult getting the true video decoding capabilities of iOS devices. Apple’s

website has information, but we found it to be slightly inaccurate (for example we can

decode 4K video on iPhone5s, which apparently can only do 1080p). It seems that if your
device has a 64-bit processor then it will be able to decode 4K H.264, but older devices with

32-bit processors will not.

Device specs according to Apple:

Device MPEG-4 H.264 MJPEG AAC-LC Dolby
Audio

iPad 4th Maximum Maximum Maximum 160 Kbps Unsupported
generation Resolution: Resolution: Resolution: 48kHz stereo
(Nov 2012) 640x480 at 1920x1080 at 1280x720 at

30fps, Simple 30fps, High 30fps, In MP4 and

profile. Up to profile up to Up to 35 Mbps | MOV

1.5Mbps level 4.1 containers

In AVI

In MP4 and In MP4 and container with

MOV MOV PCM audio

containers containers
iPhone 6 Maximum Maximum Maximum 160 Kbps Unsupported
(Sept 2014) Resolution: Resolution: Resolution: 48kHz stereo

640x480 at 1920x1080 at 1280x720 at

30fps, Simple 60fps, High 30fps, In MP4 and

profile. Up to profile up to Up to 35 Mbps | MOV

1.5Mbps level 4.2 containers

In AV

In MP4 and In MP4 and container with

MOV MOV PCM audio

containers containers
iPad 5th Maximum Maximum Maximum 160 Kbps Up to
generation Resolution: Resolution: Resolution: 48kHz stereo 1008Kbps,
(March 2017 640x480 at 3840x2160 at 1280x720 at 48kHz, stereo

30fps, Simple 30fps, High 30fps, In M4V, MP4 or
iPad 9.7inch profile. Up to profile up to Up to 35 Mbps | and MOV multi-channel

1.5Mbps level 4.2 containers
iPad Pro In AVI In MP4 and

60 /66

In MP4 and In MP4 and container with MOV
iPhone 6S MOV MOV PCM or ulaw containers
(Sept 2016) containers containers stereo audio
iPhone SE
(March 2016)
iPhone 7
(Sept 2016)
iPod 6 Unsupported Maximum Unsupported 160 Kbps Unsupported

Resolution: 48kHz stereo
1920x1080 at

30fps ,Main In MP4 and
Profile level MOV

4.1 containers

In MP4 and

MOV

containers

iPad 4 supported formats according to Apple are from here:
https://support.apple.com/kb/sp662?locale=en_US

iPad 5 supported formats according to Apple are from here:

https://support.apple.com/kb/SP751?locale=en US

iPad 9.7inch supported formats according to Apple are from here:
https://www.apple.com/ipad-9.7/specs/

iPad Pro supported formats according to Apple are from here:

https://www.apple.com/ipad-pro/specs/

iPod 6 supported formats according to Apple are here:
https://support.apple.com/kb/SP7207locale=en_US&viewlocale=en_US

9.2.2 macOS

NOTE: We recommend using the OpenGL Core graphics API (in Player Settings), instead of

the default Metal API, as we have had reports of video rendering issues on some GPUs

when using our plugin with Metal.

Many media formats are supported by macOS including H.264, H.265, ProRes 422 and

ProRes 4444.

macOS Yosemite adds support for

DV

Uncompressed R10k
Uncompressed v210
Uncompressed 2vuy

macOS High Sierra adds support for
e H.265/HEVC

61/66

https://support.apple.com/kb/sp662?locale=en_US
https://support.apple.com/kb/SP751?locale=en_US
https://www.apple.com/ipad-9.7/specs/
https://www.apple.com/ipad-pro/specs/
https://support.apple.com/kb/SP720?locale=en_US&viewlocale=en_US

9.3 Windows

A full list of supported formats can be found here:
https://msdn.microsoft.com/en-us/library/windows/desktop/dd757927(v=vs.85).aspx
https://msdn.microsoft.com/en-us/windows/uwp/audio-video-camera/supported-codecs

H.264 decoder supports up to profile L5.1, but Windows 10 supports above L5.1 profile:
https://msdn.microsoft.com/en-us/library/windows/desktop/dd797815(v=vs.85).aspx

H.265 decoder specs are here:
https://msdn.microsoft.com/en-us/library/windows/desktop/mt218785(v=vs.85).aspx

Windows 10 adds native support for the following formats:
e H.265/HEVC

MKV

FLAC

HLS Adaptive Streaming

MPEG-DASH

Windows 10 Fall Update seems to remove native H.265 / HEVC support for some users and
requires them to download the (free) HEVC Video Extension. Before update KB4056892 (4
Jan 2018), users also had to open a H.265 video in the Films & TV app after a restart before
AVProVideo could play H.265 videos. This update seems to fix that however.

9.4 Windows Phone / UWP

Details on media supported by this platform can be found is platform are here:
https://msdn.microsoft.com/library/windows/apps/ff462087(v=vs.105).aspx
https://msdn.microsoft.com/en-us/windows/uwp/audio-video-camera/supported-codecs

9.5 WebGL

Support for WebGL platform is still varied and depends on the platform and browser support.
Some formats such as AVI file container are not supported at all. As with all other platforms,
H.264 video in an MP4 container is the most widely supported format.

Adaptive streaming (such as HLS) is still not supported natively by most browsers, but we
have seen it working in the Microsoft Edge and Safari browsers.

For best compatibility make sure to force WebGL 1.0 by going to Player Settings > Other
Settings > Auto Graphics APl and removing WebGL 2.0. Failure to do so can make videos
on Chrome not render.

HLS and MPEG-DASH are not natively supported on all browsers. We have added the

ability to include 3rd party javascript libraries to handle these (dash.js and his.js). See the
streaming section for how to implement these.

62 /66

https://msdn.microsoft.com/en-us/library/windows/desktop/dd757927(v=vs.85).aspx
https://msdn.microsoft.com/en-us/windows/uwp/audio-video-camera/supported-codecs
https://msdn.microsoft.com/en-us/library/windows/desktop/dd797815(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/mt218785(v=vs.85).aspx
https://www.microsoft.com/en-us/store/p/hevc-video-extension/9n4wgh0z6vhq
https://msdn.microsoft.com/library/windows/apps/ff462087(v=vs.105).aspx
https://msdn.microsoft.com/en-us/windows/uwp/audio-video-camera/supported-codecs

On newer versions of Safari videos are not allows to auto-play unless given permission by
the user (in the preferences menu). This doesn'’t affect videos that have no audio track so
this may be a workaround. More details can be found here:
https://webkit.org/blog/7734/auto-play-policy-changes-for-macos/

Some resources about the supported formats:
https://developer.mozilla.org/en-US/docs/\Web/HTML/Supported _media_formats
https://en.wikipedia.org/wiki/HTML5_video#Browser_support
http://www.encoding.com/html5/

10. Support

If you have a bug to report, or a feature request, please use our GitHub Issue tracker:

e Issues: https://github.com/RenderHeads/UnityPlugin-AVProVideo/issues

Please do not post your project files on GitHub - instead email
unitysupport@renderheads.com if you are sending us a test project.

For general questions and product information please see:

e Unity Forum:
http://forum.unity3d.com/threads/released-avpro-video-complete-video-playback-solu
tion.385611/

Website: http://renderheads.com/product/avpro-video/

e Feedback: https://goo.gl/forms/WB9W9v4vQtez6B1Y?2

e Email: unitysupport@renderheads.com

10.1 Bug Reporting

If you are reporting a bug, please post the issue to our GitHub tracker, and include any
relevant files and details so that we may remedy the problem as fast as possible.

1. Essential details

e Error message

o The exact error message

o The console/output log if possible

o Ifit's an Android build then an “adb logcat” capture
e Hardware

o Phone / tablet / device type and OS version
e Development environment

o Unity version

o Development OS version

o AVPro Video plugin version
e Video details:

o Resolution

63 /66

https://webkit.org/blog/7734/auto-play-policy-changes-for-macos/
https://developer.mozilla.org/en-US/docs/Web/HTML/Supported_media_formats
https://en.wikipedia.org/wiki/HTML5_video#Browser_support
http://www.encoding.com/html5/
https://github.com/RenderHeads/UnityPlugin-AVProVideo/issues
mailto:unitysupport@renderheads.com
http://forum.unity3d.com/threads/released-avpro-video-complete-video-playback-solution.385611/
http://forum.unity3d.com/threads/released-avpro-video-complete-video-playback-solution.385611/
http://renderheads.com/product/avpro-video/
https://goo.gl/forms/WB9W9v4vQtez6B1Y2
mailto:unitysupport@renderheads.com

o Codec
o Frame rate
o Better still, include a link to the video file

2. Reproducible Project
e For the best chance of a fix, please send us a reproducible Unity project. Do

not post this to GitHub, but instead email us at
unitysupport@renderheads.com with a reference to the GitHub issue number.

64 /66

mailto:unitysupport@renderheads.com

11. About RenderHeads Ltd

RenderHeads Ltd is an award-winning creative and technical company that has been
designing and building cutting edge technology solutions since its formation in 2006. We
specialise in creating interactive audio-visual software for installations at auto shows,
museums, shows and expos.

11.1 Services

e Unity plugin development and consulting
e Bespoke software development:

o High-end technology for events and product launches
Interactive installations and educational museums
Video walls
Virtual reality experiences
Augmented reality apps

O O O O

11.2 Careers at RenderHeads

We’re always looking for creative technical people to join our team. RenderHeads is an
innovative software company that develops interactive experiences lead by high-end
technology and beautiful graphics. We have created installations for Nike, Ford, Nissan, Dell,
Intel, PWC, Shell, Cisco, and others. Our work also appears in the National Maritime
Museum Greenwich, Museum of Science and Industry Manchester, Sheikh Abdullah Al
Salem Cultural Centre Science Museum Kuwait and Guiness Storehouse Ireland.

We create games for museums and brands, bespoke AR, VR and huge video wall
experiences for shows, real-time visualisations for events and audio-visual products for
developers and the broadcast industry. All of the software we develop is unique, and our
clients have high expectations. We work with some of the latest hardware and software
technologies, and each project gives us a new opportunity to explore the edge of possibility.

RenderHeads offer a flexible working opportunity with remote or in-office working. We have

offices in Cape Town, South Africa and Glasgow, Scotland, and team members working
remotely from around the world.

65 /66

If you're looking for a new opportunity to push the limits and create awesomeness, please
read through the requirements below and email us at jobs@renderheads.com. Send us your
CV and links to showreel, past projects or code examples.

General Requirements

You must be able to show a history of making software, either by professional
experience or personal projects

Pragmatic software development approach - we ship software frequently
Either very strong technical skills, or a mix of creative and technical skills
Good communication skills - most of our communication is online, via
Slack/Skype/Hangouts and email/Google Docs

Positions we have available:

Video Software Developer

You would be developing in-house camera and video related software,
including our AVPro series of Unity plugins, related to cross-platform video
playback, streaming, capture and encoding
Required experience:

m Strong C++

m Multi-threaded programming
Ideal experience:

m C# and Unity

m AVFoundation / Media Foundation / DirectShow / libAV / ffmpeg /
gstreamer
DeckLink / NDI SDK
Low-level MP4 / H.264 / H.265 / HEVC / HLS / DASH / RTSP / RTP
Shader development
Camera / broadcast experience
360 video workflows
360 audio technologies

Interactive Software Developer

You would be creating software for a wide variety of technically challenging
and creative projects, and implementing cool interactive experiences using
the latest technologies
Features of our typical projects:
m Most development is in Unity
Visualisation and effects
Educational games
VR experience development
Integration with cameras, sensors and hardware
m Ul and animation development
Required experience:
m C# and Unity
m SVN/Git
Ideal experience:

66 / 66

mailto:jobs@renderheads.com

iOS / Android development

An interest in Ul and UX

An interest in improving workflow / tools
Shadertoy and other graphics rendering tech
Ability to travel (for on-site installations)

Senior Software Developer
e You would oversee the progress of the other developers in your team: making
sure everyone is on track, helping to instill good development practices,
helping to grow everyone’s experience and skills
e You would tackle some of the more difficult programming problems and make
sure that the final software is of high quality
e You would also help to scope and plan approaches for new projects, working
closely with the other senior members
e Required experience:
o Many years of software development
o Many projects/products released
o Optimisation
o Unity and C#
e |deal experience:
o Graphics programming
o Aninterest in improving workflow / tools (Jenkins, Cl, Dev ops)

11.3 Our Unity Plugins

Many of the apps and projects we develop require features that Unity doesn’t yet provide, so
we have created several tools and plugins to extend Unity which are now available on the
Unity Asset Store. They all include a free trial or demo version that you can download
directly from the website here:

http://renderheads.com/product-category/for-developers/

11.3.1 AVPro Video

’ Powerful cross-platform video playback solution for Unity, featuring support for
7 ‘ Windows, macOS, iOS, Android and tvOS.

11.3.2 AVPro Movie Capture

Video capture to AVI files direct from the GPU and encoded to files using DirectShow
codecs. Features include 8K captures, lat-long (equirectangular) 360 degree captures,
off-line rendering and more. Windows only.

11.3.3 AVPro Live Camera

Exposes high-end webcams, tv cards and video capture boards to Unity via DirectShow.
Windows only.

67 /67

http://renderheads.com/product-category/for-developers/
http://renderheads.com/product/avpro-video/
http://renderheads.com/product/av-pro-movie-capture/
http://renderheads.com/product/av-pro-live-camera/

11.3.4 AVPro DeckLink

*‘3

Integrates DeckLink capture card functionality into Unity, allowing users to send and receive
high-definition uncompressed video data to and from these capture cards.

68 /68

http://renderheads.com/product/avpro-decklink/

Appendix A - Frequently Asked Questions (FAQ)

1.

Why won’t my high-resolution video file play on Windows?

The ability to play high resolution videos depends on the version of Windows
operating system and which video codecs you have installed.

By default AVPro Video will try to use the standard Microsoft codecs that come with
Windows. These have limitations, for example:

Decoder Windows 7 and Windows 8+
below
h.264 1080p* 2160p (4K)
h.265 (HEVC) unsupported* 2160p (4K)
or 4320p (8K) if your
video driver supports

* If you want to use 3rd party codecs you can install them to improve the range of
resolution and format options available. These come in the form of Media
Foundation or DirectShow codecs. The LAV Filters are a great example of
DirectShow codecs that will allow for higher resolution video decoding.

Does Time.timeScale affect video playback speed?

Yes we have BETA support for time.timeScale and time.captureFramerate. Simply
enable the option on the Media Player component in the panel labelled “Global
Settings”.

Does AVPro Video support playing YouTube videos and live streams?

Yes and no. If you enter a YouTube URL into AVPro Video it will not be able to play it
because this is the URL to the website and not the video. It is possible to gain
access to the underlying MP4 file or HLS stream URL which will work with AVPro
Video. This may be against the terms and conditions of YouTube though. We have
heard that some wusers have experimented with wusing the youtube-dl
https://rg3.qgithub.io/youtube-dl/ command-line tool to extract the video URL and then
use that for playback within AVPro Video.

How can | get smoother video playback for my Windows VR app?
This is usually caused by the video decoding taking too much CPU time. Some

videos (especially highly compressed ones) require a lot of CPU time to decode each
frame.

69 /69

https://rg3.github.io/youtube-dl/

Try enabling the hardware decoding option in “Platform Specific” panel. This will
enable your application to use GPU decoding which is much faster. This option is
only supported on Windows 8.1 and above and when D3D11 graphics API is used.

You could also try re-encoding your video using settings that are less demanding for
the decoder. Most H.264 encoders have a ‘fast decode’ preset, or you can manually
change settings such as disabling CABAC, reducing the number of reference frames,
reducing bitrate, disabling B-frames, disabling the loop (deblocking) filter etc.

You could also try switching to another video codec that allows for less CPU
intensive decoding. Codecs such as H.264 / H.265 are generally very heavy on the
CPU. Hap is an extremely fast codec but will result in large files.

Is GPU hardware decoding available?

Yes it is on most platforms. Android, iOS, tvOS and macOS mostly use GPU
decoding - but it depends on the codec. For Windows GPU decoding is enabled by
default but is only available for Windows 8.1 and above and when using D3D11
graphics API. You can toggle GPU decoding is enabled via the Platform Specific
panel:

Platform Specific

Owverride Fath

Media Foundation

v

Is multi-channel audio supported?

Audio with more than 2 channels should be supported on desktop platforms. On
Windows you will need to set your sound settings in the Control Panel for the number
of channels you want to output. If you leave your Windows sound settings as stereo
then the audio will get mixed to stereo.

. Why isn’t seeking accurate / responsive?

The way seeking works depends on the platform. Some platforms support frame
accurate seeking but most will only seek to the nearest key-frame in the video. In
general to improve seek accuracy and responsiveness you can re-encode your
videos with more frequent key-frames (smaller GOP). The downside of this is that

70/70

the size of the video file will increase (more key-frames = larger file).

We have two seek functions: Seek() and SeekFast(). SeekFast can be used when
accuracy isn’t important but whether it's faster or not depends on support from the
platform and can vary based on the video codec used.

Platform / API Accurate Seeking Supported

Windows Desktop / DirectShow Yes (but depends on codec used, native
Microsoft H.264 decoder doesn’t
support)

Windows Desktop / Media Foundation Yes

Windows Store / Phone / UWP Yes

Android / MediaPlayer No (but coming in Android “O”)
Android / ExoPlayer Yes

macOS Yes

iOS /tvOS Yes

WebGL Depends on browser

8. Windows - Why isn’t my stereo top-bottom or left-right video displaying

correctly?

If your stereo video is only decoding one of the views then this is because there is
stereo metadata encoded within the video which causes our Media Foundation
decoder to interpret incorrectly. The only way to currently solve this is to remove the
metadata from the video. One way to do this is using FFMPEG:

[

ffmpeg -i %1 %$1-video.nut

[

ffmpeg -1 %$1-video.nut -crf 10 %1l-stripped.mpd
We have also had reports that this works:
ffmpeg -i in.mp4 -map metadata -1 -c:v copy -c:a copy out.mpé

. Windows - Why do videos take a long time (1-2 seconds) to open when using
DirectShow?

71171

10.

1.

12.

13.

14.

SETTINGS

We have seen this happen when the Nvidia Geforce Experience is installed and the
Share option is enabled (ShadowPlay). Disabling the share option or uninstalling this
software resolves this issue.

Windows - Why doesn’t my H.265 8K video play when | make a build?

This is probably because your build is 32-bit. Try making a 64-bit build. See our
other notes above for other 8K requirements.

Laptop - Why can’t my powerful laptop decode a 8K video?

Laptops can have multiple GPUs and will often default to the built-in GPU (eg Intel)
instead of the more powerful discrete GPU (eg NVidia / AMD). Try going to the
NVidia Control Panel to make the discrete GPU the default and then reload Unity or
your application.

Hap Codec - Why don’t my Hap encoded videos play?

If your platform is Windows desktop then this is usually because the DirectShow
video API has not been selected. See the notes above about how to use the Hap
codec.

Scrubbing - Why is seeking/scrubbing unresponsive when using a Slider GUI
component?

This is a common mistake where the OnValueChanged event in the Slider
component is set to trigger a method that calls Seek() on the video. The problem is
that OnValueChanged doesn’t only trigger when the user is interacting with the slider,
but also when the video is playing normally and is updating the slider position. So
the Update method might be changing the slider position based on the video position,
which then causes OnValueChanged to trigger, which causes a seek. You need to
guard against this by checking that the user is interacting with the slider, perhaps by
adding OnPointerDown and OnPointerUp events. OnPointerDown you would seek to
that position and also set a flag. Then in OnValueChanged you would only seek if
that flag was set. In OnPointerUp you would unset the flag.

macOS - Errors when using Unity Cloud Build

Make sure that you set the correct XCode version in the Cloud Build settings. Try
XCode 8.3.3 as this is the version we currently use for building the plugin.

72172

15.

16.

17.

18.

19.

20.

21.

macOS - Publishing for Mac App Store and get error “Invalid Signature”?

We’re not sure why this happens but we’ve had reports that simply deleting all of the
.meta files inside the AVProVideo.bundle will resolve this issue.

macOS - Why isn’t my video displaying, or is displaying corrupted video?

We have seen this happen when using the Metal graphics API. Try going to Player
Settings, unticking the option “Auto Graphics API for Mac” and make “OpenGLCore”
at the top of the list.

macOS - Why is the video playback very jumpy when | make a build, but fine in
the editor?

We have seen this happen when using the Metal graphics API. Try going to Player
Settings, unticking the option “Auto Graphics API for Mac” and make “OpenGLCore”
at the top of the list.

iOS / tvOS - Why doesn’t my video file play properly?

Make sure that your video file doesn’t contain an MP3 audio track. iOS doesn’t
support MP3 audio in video files - use AAC for audio instead.

iOS - Can | playback a video from the Videos library?

Yes if the video is not content protected and you have it's URL. URL's for items in
the video library take the following form:

ipod-library://item/item.md4v?id=1234567890123456789

You can get the URL of an item by using the MPMediaQuery class from the
MediaPlayer framework.

iOS - Can | playback a video from the Photo Library?

Yes. You need to use the UlimagePickerController to select the video. This will
result in the video being processed into your app's temp folder where you can access
it via the URL returned from the controller.

iOS / tvOS - Why doesn’t my HLS m3u8 stream play?

First you should check the XCode console for error messages. This can give you a
clue about the problem.

Next you should run your HLS manifest through the Media Stream Validator Tool
(https://developer.apple.com/library/archive/technotes/tn2235/_index.html) provided
by Apple. iOS and tvOS are VERY strict when it comes to streaming video, so it is

73173

https://developer.apple.com/library/archive/technotes/tn2235/_index.html

22.

23.

24.

25.

26.

27.

possible that a stream will play on macOS, but be refused on iOS or tvOS.

iOS - How can I fix the error message: "Missing Push Notification Entitlement -
Your app includes an API for Apple's Push Notification service, but the
aps-environment entitlement is missing from the app's signature"?

In the generated Xcode project:

Select the project

Select Capabilities

Scroll down to Push Notifications
And make sure it’s turned off

iOS - How can | fix the error message: "This app attempts to access
privacy-sensitive data without a usage description. The app's Info.plist must
contain an NSCameraUsageDescription key with a string value explaining to
the user how the app uses this data."?

Open the Info.plist file in xcode, and manually add "NSCameraUsageDescription"
(Privacy - Camera Usage Description), with a value explaining the reason why you
are using the webcam. In our case, this was caused by using the Google Cardboard
code and that needs the webcam to read the Cardboard device QR code, so we
added the following value "Requires camera for reading Cardboard QR code".

Oculus Go - Why is my Live Steam over LAN not work?

It seems that the Oculus go doesn’t allow arbitrary ports to be used. Try setting your
stream to use port 80.

Android - Why doesn’t my huge video file play from StreamingAssets folder?

Files in the StreamingAssets folder for Android are packed into a JAR file and so
before we can play them we must extract them to the apps persistent data folder.
Huge files can take a long time to extract and copy and sometimes they could even
cause the device to run out of storage space or memory. For really large files we
recommend placing them the videos in other folders on the device and then
referencing the absolute path to that file. This also has the added benefit of not
having a copy huge files and wait ages when deploying builds to the Android device.

Android - Why does the adb logcat receive so many logs “getCurrentPosition”
from MediaPlayer-JNI?

Android’s MediaPlayer logs this to verbose channel, simply change your logging filter
to ignore verbose logs.

Android - Why doesn’t the video display when using Vuforia?

In our test Vuforia doesn’t play well with AVPro Video when multi-threaded rendering
is enabled. Simple disable this option in the Player Settings screen.

74174

28.

29.

30.

31.

32.

Android - Why does my build fail with a message about DEX and zip classes?

This can happen when there is a conflict in the Java code. We include a JAR called
zip_file.jar which contain classes for handling zip files. If you have another plugin in
your project that also contains these classes then Unity will fail the build. Read the
exact Unity error message and if it is related to zip classes then you can try deleting
zip_file.jar file.

Or you may need to upgrade from JDK 1.7.0 to 1.8.0
Cardboard/Google VR - Why is the image shaking?

We’ve had reports that this is caused by enabling the option “track position” in the
Gvr head.

Windows 10 - Why doesn’t my H.265 / HEVC video play?

Microsoft removed the HEVC codec that was previously included in Windows during
the Fall Creators Update in April 2018, Windows 10 version 1709.

Currently in Windows 10 if you want to play HEVC content you either need to open a
HEVC video in the default Film & Movie app, or you need to install this extension:

“HEVC Video Extensions from Device Manufacturer”
https://www.microsoft.com/en-us/p/hevc-video-extensions-from-device-manufacturer/
9n4wgh0z6vhq

macOS / iOS / tvOS - Why doesn’t my H.265 / HEVC video play?

Apple is very strict with the 4 character (FOURCC) ‘tag’ that is used to identify the
codec of the video, and only accept videos with the HVC1 tag, whereas many video
encoders embed the tag HEV1, which would cause the video not to play on Apple
platforms.

To fix this you either need to be using encoding software that lets you specify the
HVC1 tag, or use a tool such as FFMPEG to change the tag for you using this
command-line:

ffmpeg -1 video.mp4 -c:v copy -tag:v hvcl -c:a copy video-hvcl.mp4
Why is my video displaying with the wrong rotation?

Videos recorded from mobile devices contain orientation metadata. Some platforms
parse this metadata during decoding and produce the texture in the correct final
orientation, while others don’t and we have to correct it in C# or in the shader. We do

handle this for most cases, however if you are using the ApplyToMesh or
ApplyToMaterial on macQOS, iOS and tvOS then this rotation will not be applied.

75175

https://www.microsoft.com/en-us/p/hevc-video-extensions-from-device-manufacturer/9n4wgh0z6vhq
https://www.microsoft.com/en-us/p/hevc-video-extensions-from-device-manufacturer/9n4wgh0z6vhq

33.

34.

35.

There are a few ways to fix this:

1) Re-encode the video with the rotation metadata removed and with the video
encoded in its final orientation. Using FFMPEG you can do this via:

ffmpeg -y -i %1 -metadata:s:v:0 rotate=0 %1-norotation.mp4

2) Detect the orientation of the video and apply a rotation of the texture coordinates
in the shader:

Orientation ori = Helper.GetOrientation(media.Info.GetTextureTransform()) ;
Matrix4x4 oriMatrix = Helper.GetMatrixForOrientation (ori);
_material.SetMatrix (" texRotation", oriMatrix);

and then the shader define the matrix variable:
uniform float4x4 texRotation;

and apply the matrix rotation in the shader shader via something like:
o.uv.xy = mul(texRotation, v.texcoord.xy).Xy;

You may also have to change the texture wrapping mode in MediaPlayer > Visual >
Wrap to Repeat

If you are using WebGL, then we have found that most browsers (Edge and Chrome)
pre-transform the video so that it is in the correct orientation, as there is no
mechanism in HTML 5 to retrieve the video orientation/transform. We have found
that Firefox doesn’t support this though.

iOS - Why do | get this message about privacy permission using camera?
Some users have reported getting this message:

“This app attempts to access privacy-sensitive data without a usage description. The
app's Info.plist must contain an NSCameraUsageDescription key with a string value

explaining to the user how the app uses this data.”

This seems to be a bug in Unity 5.4.1 and has been resolved in Unity 5.4.2.

Will you support MPEG-DASH or another adaptive streaming system?

MPEG-DASH is currently supported on Windows 10, Windows UWP 10 and Android
(when using ExoPlayer API) only. We hope to improve support for these sorts of
streaming systems eventually. The plugin already supports some basic streaming
protocols and for now we’re focusing on basic features before we look at advanced
features such as these. HLS adaptive streaming is supported on most platforms.

Android - Why is my video playback freezing?

76/76

36.

37.

38.

39.

We have found that H.264 videos with GOP = 1 (all I-Frames / Key-frames) freeze on
Android. GOP interval of 2 seems to be fine.

Windows - Why can’t | stream HLS at 4K in Windows 10?

Windows 10 (before Anniversary update) seems to limit the stream resolution based
on your screen resolution and the monitor DPI scaling setting. To get 4K using HLS
you need a 4K monitor and your DPI scaling set to 100%. This issue now seems to
be resolved in the latest version of Windows 10.

Windows - Why does the video control react correctly in Windows 7, but not in
Windows 8 or above?

If you try to call video control function (eg Seek, Mute, SetVolume etc) just after you
open the video file, this can cause problems. Video loading can be synchronous or
asynchronous, so you need to wait until the video has completed loading before
issuing any control commands. In Windows 7 and below the DirectShow API is used
by default. Currently the open function works synchronously, so control functions will
work immediately after loading. In Windows 8 and above the Media Foundation API
is used by default, and this is asynchronous. The best approach is to use the event
system to wait for the video to be ready (contain meta data), or to poll the
MediaPlayer (Control.HasMetaData()) before issuing control functions.

Why does my HLS / RTSP stream created with FFMPEG work so badly in AVPro
Video?

Some users have reported issues with creating a stream with FFMPEG where the
stream will take a long time to connect and will only send through frames
occasionally. We have found that you need to manually add the GOP size
parameters to be a multiple of your frame-rate. So for example if your frame-rate is
25 then you should add “-g 25” in your FFMPEG command-line.

Android - How do | authenticate my RTSP stream?

RTSP on Android is currently only supported when using the MediaPlayer API. You
should be able to pass in your username and password in the URL using the
following format:

rtsp://<user>:<password>@<host>:<port>/<url-path>

Another way is to pass it via HTTP header fields. We also support this. In the
MediaPlayer component, go to Platform Specific > Android section and use the
JSON HTTP HEADER field to put something like this JSON:

{

"SERVER KEY TO PARSE USER NAME":"username",
"SERVER KEY TO PARSE PASSWORD":"password"

}

77177

40.

41.

42.

43.

44,

45.

Windows - Why is there a slight colour shift between software and hardware
decoding?

We’re not completely sure why this is. It appears that sometimes that hardware
decoder decodes the video slightly darker in places. On the whole the effect is very
small, so it only affects videos that contain data that must be reproduced exactly. We
have found that the following FFMPEG command does improve the colour matching.

ffmpeg -i video.mp4 -y -vf
"scale=in range=tv:out range=tv:in color matrix=bt60l:out color matri
x=pbt709" out.mp4

Windows Audio - Why does my HLS/DASH stream audio have gaps or play at
the wrong rate when using the AudioOutput component?

This currently can happen when using adaptive streams as we can’t determine the
sample rate, and thus cannot set up a resampler to convert to the sample rate Unity
is using internally. To solve this you need to set Unity’s sample rate in the Audio
Settings to match that of the stream (eg 44100).

Audio - Why does my multi-track audio file play all tracks at once?

This can happen when all of the audio tracks are set to default. You need to encode
the video with only one of the tracks set to default. Using FFMPEG you can do this:

ffmpeg -i video noaudio.mp4 -i audio esp.md4a -i audio jap.mda -1i
audio_eng.m4a -map 0 -map 1 -map 2 -map 3 -disposition:a:1 none
—-disposition:a:2 none -codec copy output.mpd

Which DRM content protection schemes does the plugin support?
See the DRM section in this documentation.
How do I flip my video horizontally?

a. In the MediaPlayer component, in the Media Properties section, set the wrap
mode to "Repeat".

b. If you're using the ApplyToMesh component, then you just need to set the
Scale X value to -1

c. If you're using the ApplyToMaterial component, then you just need to set the
Scale X value to -1

d. If you're using the DisplayIMGUI component, then this doesn't have any way
to flip video without editing the script.

e. If you're using the DisplayUGUI component, then just set the UVRect W value
to -1.

Windows - Why doesn’t the plugin support Windows XP SP2 and below?

Modern Visual Studio compilers require XP SP3 as a minimum. One of the reasons

78178

46.

47.

48.

for this is builds reference the function GetlLogicalProcessorinformation() in
Kernel32.dIl which isn’t present in XP SP 2. The lack of this function causes our DLL
to fail to load. More information here:
https://connect.microsoft.com/VisualStudio/feedback/details/811379/

How do | use a video in a reflection probe?

If you want a video to appear as part of a reflection in your scene, then you can add a
reflection probe, set to update in real-time and refresh every frame.

Then add geometry to your scene and use the ApplyToMesh component to apply the
video to that geometry. If you are using a equirectangular video then you can apply
the video to our OctahedronSphere mesh and use a material on it with the
InsideSphere Unlit shader. Then as long as your reflection probe is inside this
sphere, it should collect the video.

If you don't want this geometry to appear in your scene, then you can either move the
geometry and reflection probe to another area of your scene (you will then have to
set the Anchor Override on your MeshRenderer ot make it use that reflection probe),
or create a new Layer name and assign it to the geometry and reflection probe, also
setting the Culling Mask of the reflection probe so it only renders that geometry.
Then in your other cameras you will need to exclude that layer from the camera
culling mask list.

How do | use a video as a skybox?

If you want the video to appear as the Skybox, create a new material that uses
Skybox/Panoramic shader, then go to Lighting Settings and assign this material to
the Skybox field. Then add a ApplyToMaterial component and assign it to this
material and to the mediaplayer. The video should now render to the default skybox
in your scene. You can also leave the Lighting Settings default Skybox field as
default, and just add a Skybox component to your camera to override which skybox
material it uses.

What'’s the difference between your different Unity video playback plugins?
We previously had 3 video playback plugins for Unity:

a. AVPro Video

b. AVPro Windows Media (deprecated August 2016)

c. AVPro QuickTime (deprecated May 2016)

Here is a table giving a rough comparison of the plugin features:

AVPro Video
First Released 2016
Windows XP-7 Yes**

79179

https://connect.microsoft.com/VisualStudio/feedback/details/811379/

Windows 8-10 Yes

Windows UWP Yes
Windows Phone Yes
macOS Yes
Android Yes
i0S Yes
tvOS Yes
WebGL Yes
64-bit Yes
2K H.264 Yes
4K H.264 Yes
8K H.265 Yes

Streaming URL Yes

Hap Codec Yes

MP4 Container Yes

Works with VR Yes
ASync Loads Yes
Transparency Yes
Speed Fast

** Currently only using DirectShow path, adding Media Foundation path soon.

80/80

Appendix B - Release History

e Version 2.0.0 - Alpha (INTERNAL)
o General
m Huge code cleanup and refactoring
n New MediaPlayerUl demo
m Added assembly definition (asmdef) files to improve compile times
and organisation
m Dropped support for all Unity versions before before Unity 5.6.6
o Android
m Upgraded from ExoPlayer 2.8.4 to 2.9.4, which raises a minimum API
level to 24/26
m Upgraded from Facebook Audio 360 1.6.0to 1.7.0
o i0S/tvOS
m Entirely new plugin written from scratch, unified codebase,
performance and stability improvements
o macOS
m Entirely new plugin written from scratch, unified codebase,
performance and stability improvements
o Windows
m New Windows RT plugin, uses the latest Microsoft video APIs and
offers a lot of improvements, especially for streaming media
m For Windows RT added an option to select the highest bitrate when an
adaptive stream starts
m New Windows RT plugin fixes previous issue where stereo videos
containing stereo metadata didn’t display correctly
Added support for AES HLS encryption
Dropped support for Windows Phone and Windows Store 8.1, now we
only support the UWP (10) Windows platforms
m Upgraded from Facebook Audio 360 1.6.0to 1.7.0

e Version Unreleased (INTERNAL)
o Android
m Nhone

e Version 1.10.1 - 2 October 2019

o Android
m ExoPlayer API path now uses a bandwidth meter to enable adaptive
streaming
o i0OS

m Add support for auto-resuming playback after an audio route change
has occurred (i.e. by removing headphones)
o macOS /iOS /tvOS
m Fixed crash caused by trying to change to non-existent audio track
m Fixed crash caused by race condition when disposing of a player
whilst an open is still pending completion
o Windows

81/81

m Added support for Hololens single-pass-instanced stereo mode to
InsideSphere shaders
o General
m Added option to PlaylistMediaPlayer component to auto close videos
that are not visible (freeing up memory)
m Fixed issue when calling RemoveAllListeners() where it wouldn’t
correctly remote listeners

Version 1.10.0 - 8 July 2019
o macOS /i0S /tvOS
m Improved memory handling so all texture memory is freed when the
media player is destroyed
o iOS
m Fixed issue where app regaining focus doesn’t resume playback
o Android
= Improved loading with file offsets - now works from Android App
Bundles (AAB), file:// URL scheme, OBB and ZIP files
Added custom HTTP header support to ExoPlayer path
Fixed a couple of issues that could cause blank frames or playback to
not appear
m Calling Play() ExoPlayer can now resume playback once a dropped
network connection has been restored
Fixed the transparent lit shader being upside-down on Android
Fixed issue where FirstFrameReady event could trigger without a valid
texture or zero width/height values
m Fixed audio going out of sync when looping local videos using the
ExoPlayer API path
Buffering event now fires on first video load
Improved thread safety and various internal logic for improved stability
Added detection and warning message for Vulkan usage (not
supported)
o General
m Support window updated to post issues to GitHub page

Version 1.9.17 - 14 June 2019
o Android
m Fixed regression introduced in 1.9.16 that caused videos to freeze on
the first frame and not report any duration
m Fixed some issues related to using ExoPlayer which would cause
videos to randomly fail to load
m Fixed bug where uGUI component wouldn’t display OES or stereo
videos correctly
o macOS /iOS /tvOS
m Fixed crash when playing audio only assets
o iOS
m Fixed issue with player restarting after the application enters
foreground
o WebGL

82/82

m Fixed regression introduced in 1.9.16 for mute autoplaying videos that
contain audio
m Removed erroneous mipmap support for version below Unity 5.6
o Windows
m Added support for paths longer than 240 characters
o General
m Fixed bug where uGUI component wouldn’t display stereo videos
correctly
m Fixed FrameExtract demo in async mode where it would not capture
the first frame
m Improved MediaPlayer FrameExtract methods so that a time threshold
can be specified to make approximate extraction faster

Version 1.9.16 - 4 June 2019
o UWP /Hololens
m Fixed crash bug which was a regression introduced in 1.9.12
m Fixed compiler warning in 2019 for deprecated HLSStream WWW
class usage
o Android
m Fixed resource leak when using MediaPlayer APl where
FilelnputStream was not closed
m Fixed bug where subsequent video loads would always play
automatically
m Various logic changes to reduce bugs
o WebGL
m Improved Safari support - videos containing audio that don’t have
permission to autoplay will now log an error and attempt to play with
audio muted
o General
m DisplayUGUI component now uses lazy evaluation for shader loading
which improves loader performance in most cases

Version 1.9.14 - 9 May 2019
o Known Issues
m Aregression introduced in 1.9.12 causes UWP builds (Hololens and
desktop) to crash - Fixed in 1.9.16
o Windows
m Fixed crash bug introduced with Unity 2019
m Added support for auto-generating mipmaps for Hap videos and a few
other formats
o macOS /i0S /tvOS
m Fixed crash bug introduced with Unity 2019
m Fixed compile error when building with IL2CPP
m Fixed status state on media closing
m Improved accuracy of seeking
m Fixed incorrect colours when using the uGUI Mask component
o General
m Fixed parsing bug in HLSStream

83/83

m Added ability to add item to PlaylistMediaPlayer

Version 1.9.12 - 28 January 2019
o Known Issues
m A regression introduced in 1.9.12 causes UWP builds (Hololens and
desktop) to crash - Fixed in 1.9.16

o Android
m Fixed typos in OES shader introduced in 1.9.10
o WebGL

m Fixed issue where compile errors would happen when building with
Development Mode

o Windows
m Fixed crash bug when running in 32-bit
o General

m Fixed script warnings and errors showing in Unity 2018.3.x

Version 1.9.10 - 10 January 2019
o Known Issues
m Android OES shader is broken, fixed in 1.9.12
o Android
m Fixed a crash bug with ExoPlayer that would happen randomly when
loading or closing a video
m Added HIGH_QUALITY option to OES shader which fixes the issue of
equirectangular videos having distortion at the poles
m Added texture transform to the OES shader
o General
m Fixed bug where UVRect didn't work in DisplayGUI when in
ScaleAndCrop mode

Version 1.9.8 - 13 December 2018

o Windows
m Fixed a rare crash bug that could happen when closing multiple videos
at once

Version 1.9.7 - 11 December 2018
o macOS /iOS /tvOS
m Fixed rare memory leak when rendering with Metal where a texture
was not freed after a seek operation on multi-resolution HLS media
o Android
m Added support for automatic rotation of portrait videos when using
ExoPlayer
m Added support for linear color-space to OES rendering path
o Windows
m Fixed the device name for the Oculus Rift audio device
m Fixed Facebook Audio 360 support for playing audio to a specific
named device
o General
m Fixed a shader issue where stereo top-bottom videos wouldn’t display
the correct eye on Windows and Android

84 /84

m Other minor improvements

e Version 1.9.6 - 16 November 2018
o macOS
m Fixed a Metal rendering issue where the watermark didn’t display in
the editor
m Fixed issue with Hap and Metal rendering in the editor
m Upgraded to latest Hap version (1.6.9)

o i0S/tvOS
m Fixed a crash in iOS 9 and lower that could happen when closing a
player
m Fixed packed transparent shaders to expand range correctly when
using YpCbCr mode
o Android

m Fixed bug where using the OES shader would cause video to display
pink/black, this was a regression introduced in 1.9.5
o General
m Shaders refactored

e Version 1.9.5 - 7 November 2018
o Known Issues
m A regression in our Android OES shader causes videos to appear
black/pink when using OES mode - Fixed in 1.9.6
m Custom shaders may not compile due to removal of
Convert420YpCbCr8ToRGB - Fixed in 1.9.6
o macOS /iOS /tvOS
m Fixed issue where videos would appear too bright when using Linear
colorspace and YpCbCr mode
m Improved support for different video colour transforms(Rec601,
Rec709)
m Convert420YpCbCr8ToRGB shader function removed and replaced
with ConvertYpCbCrToRGB
o Android
m Fixed a crash and memory leak bug regression introduced in 1.9.3,
caused videos not to release resources when a player is destroyed
o Windows
m Fixed issue where using Low Latency option and Unity Audio would
cause the application to lock up

e Version 1.9.4 - 25 October 2018
o Known Issues
m A regression in our Android implementation causes videos not to
release resources when a player is destroyed - Fixed in 1.9.5
o i0S/tvOS

m Fixed issue where subsequent video loads would sometimes fail to
display frames

e Version 1.9.3 - 22 October 2018
o Known Issues

85/85

m A regression in our Android implementation causes videos not to
release resources when a player is destroyed - Fixed in 1.9.5
o Android
m Fixed Oculus Go texture wrap mode being set to repeat instead of the
default clamp. This was due to a new firmware update that allowed
different texture wrap modes on OES textures
m Added support for SeekFast() to ExoPlayer which seeks to the closest
keyframe
m Various robustness improvements related to resource freeing and
plugin shutdown for Android apps that contain a Unity player instance
= Built with new version of Android Studio (3.2)
o macOS /iOS /tvOS
m Added support for handling key requests for encrypted HLS streams
(eg using AES). Supports direct key setting and key retrieval using
authentication token via HTTP header. See DRM section for details.
m Added new SetPlayWithoutBuffering(bool) method to allow playback
to start immediately, bypassing the API buffering duration logic
o WebGL
m Added support for mip-map texture generation
o General
m Fixed regression in 1.9.2 causing some events not to fire, in particular
the subtitle change event
m Fixed issue where videos would open twice when calling
OpenVideoFromFile() while AutoLoad was enabled and Start() hadn’t
run yet
= Many improvements to PlaylistMediaPlayer, including StartMode and
ProgressMode options, improved Ul and per-item transitions

Version 1.9.2 - 2 October 2018
o Known Issues
m Aregression in the the general event handler can cause some events
not to fire. Fixed in 1.9.3
o Android
m Fixed rare crash bug when using ExoPlayer due to commands being
called in the render thread
m Added file offset support when using ExoPlayer and loading from
StreamingAssets folder

o i0S
m Fixed issue where some HLS streams wouldn’t play on older iOS
devices
m Fixed XCode 8/9 compatibility issue
o WebGL
m Fixed support for WebGL 2.0
o General

m Exposed options for automatically pausing / playing the media when
application pauses

m Exposed a mask to control which events the MediaPlayer should
trigger. This is a minor optimisation to allow event logic to be skipped.

86 /86

Fixed a minor issue with OnApplicationPaused and
m_WasPlayingOnPause

Fixed a logic bug where a non-auto-play video loaded from a prefab
wouldn’t play after calling Play()

Fixed a minor issue with PlaylistMediaPlayer where
stereo/alpha/loop/path state wasn’t set correctly

Version 1.9.1 - 7 September 2018
o macOS and iOS

Fixed bug where video would always auto-play (only iOS < 10.0 and
macOS < 10.12)
Fixed bug where texture properties (wrap, filter etc) weren’t being set

o WebGL

Fixed regression introduced in 1.9.0 which prevents videos from
loading

Fixed support for 3rd party decoder libraries

Added support for “blob:” URL scheme

o General

Resampler now honours texture properties set in MediaPlayer
Added position bar to PlaylistMediaPlayer editor

o Windows Desktop

Fixed focus, volume and mute on videos using FB 360 Audio

Fixed some issues with switching between instances of videos using
system audio and FB 360 Audio

Fixed a bug where audio sample rate and channel count were
swapped around

Version 1.9.0 - 23 August 2018
o Known Issues

A regression in the WebGL player causes videos to not load, fixed in
version 1.9.1

o Android

Upgraded Facebook Audio 360 to version 1.6.0 from 1.5.0
Upgraded ExoPlayer to 2.8.4 from 2.8.2

ExoPlayer is now the default video APl instead of MediaPlayer
Changed Android API level requirement to 15 from 16 when using
MediaPlayer API (ExoPlayer still requires 16)

o Windows Desktop

Upgraded Facebook Audio 360 to version 1.6.0 from 1.5.0

o WebGL

Added support for 3rd party decoder libraries such as dash.js and
his.js, see documentation for details
Added warning for unsupported WebGL 2.0

o General

Added new (beta) PlaylistMediaPlayer component which allows
seamless playlist progression and has a number of optional
transitions, and a new demo scene using it

Added a new demo scene and video showing stereo 360 playback

87/87

with spatial audio (on Windows and Android only)
o Minor
m Resampler now has some support for videos with unknown frame rate
m Sphere demo no longer has camera affected by VR positional head
tracking
m Added demo scriptlet to show how to toggle stereo mode via script

Version 1.8.9 - 9 July 2018
o Android
m Upgraded ExoPlayer to version 2.8.2 from 2.8.1
m Fixed audio glitches on Oculus Go when using Facebook Audio 360
by increasing the default spatial buffer size
m Reduced garbage generation by caching frequently used methods
o Windows UWP / Hololens
m Fixed an issue where non-debug builds would crash on some versions
of Unity
o WebGL
m Added notes to AVProVideo.jslib on how to integrate dash.js
o General
m Reduced some garbage generation in various components
m Improved shader support for multi-view stereo rendering

Version 1.8.8 - 26 June 2018
o Android
m Upgraded ExoPlayer to version 2.8.1 from 2.6.0
m Upgraded Facebook Audio 360 to version 1.5.0 from 1.4.0
m Fixed audio track 1 not being set initially on ExoPlayer
m Removed unneeded debugging and logging code on ExoPlayer
o Windows Desktop
m Upgraded Facebook Audio 360 to version 1.5.0 from 1.4.0
m Fixed bug where videos using FB Audio 360 wouldn’t stop at the end
of the video
m Fixed a bug where using D3D9 and DirectShow and resizing the
window or switching fullscreen mode would cause a crash
o macOS /iOS /tvOS
m Fixed an issue in Unity 2018.1 and above that caused the projects not

to compile
o WebGL
m Fixed issue where Buffering and Stall events weren’t triggered
correctly
o General

m Fixed garbage generation in DisplayUGUI component
m Added support for Stall event on platforms that don’t natively support it
m Added documentation notes on seeking and playback rate

Version 1.8.7 - 16 May 2018

o macOS
m Fixed a bug in the HapQ colour conversion
o WebGL

88 /88

Fixed compile issue in Unity 2017.4.1 by removing unused method
and variable

o Windows

Fixed a bug where FinishedPlaying event wouldn’t get retriggered
after the first time when playing a WAV or MP3 audio file

Now when emulating mobile builds in the editor, texture size
limitations are ignored to allow videos to play locally

o General

Fixed a bug with the 180 video shader where left-right stereo packed
videos appear behind the viewer

Fixed the SSL certificate validation code in HLSStream so it doesn’t
ignore bad certificates

Version 1.8.6 - 13 May 2018
o macOSs, iOS, tvOS

Fixed issue where playback wouldn't resume after setting playback
rate to zero

Fixed crash issue when playing back HLS streams on iOS/tvOS
versions older than 10.0

Fixed issue playing some unescaped URLs

o Android

Added option to force a streaming format using Exoplayer regardless
of the file extension

Added option to prefer software decoders using ExoPlayer

Fixed bug where video wasn't pausing correctly when seeking and the
app is suspended

o Windows

Fixed rare runtime error when audio is disabled in Unity

o General

Fixed stretching issue in 180 degree video display and added a new
mapping layout field in the Visual section for specifying that the video
is using equirectangular 180 degree layout

Fixed null reference exception in ApplyToMaterial script when no
material is assigned

Added buffered progress rendering to the 03_Demo_VideoControls
sample scene timeline

Moved the MediaPlayer debug display option into a separate
component called DebugOverlay

Added new option to UpdateStereoMaterial component so allow
stereo rendering to force just the left or right eye

PlayMaker actions now have a logo in the header

Shaders updated to use a common function for vertex transform

Version 1.8.5 - 5 April 2018
o macOs, iOS, tvOS

Fixed issue since iOS 11 where live HLS streams refused to go higher
than the device native resolution
Fixed a potential crash bug on old iOS versions (before 10.0) when

89/89

querying audio or video bitrate
o General
m Fixed minor bug where newly loaded subtitles wouldn’t immediately
update

Version 1.8.4 - 23 March 2018
o macOS, iOS, tvOS
m Fixed crash bug introduced in 1.8.0 related to seekableTimeRanges in
HLS streams
o Android
m Added OES shader support for the GUI component

Version 1.8.2 - 19 March 2018
o Known Issues
m There is a crash bug on macOS, iOS and tvOS when closing down a
HLS stream. This is fixed in 1.8.4
o Windows
m Improved accuracy of the Stalled state/event which triggers when the
player is unable to decode the next frame, usually due to network
connection issues
m Improved accuracy of IsBuffering state/event which occurs when data
is being downloaded over the network
m Fixed a bug with HLS live streams where pausing the stream or a
dropped connection would stop streaming indefinitely. The stream
now resumes correctly, or throws an error if the stream cannot be
resumed

Version 1.8.0 - 14 March 2018
o Known Issues
m There is a crash bug on macQOS, iOS and tvOS when closing down a
HLS stream. This is fixed in 1.8.4
o Android
m Performance improvement by minimising texture copy operations
m Upgraded ExoPlayer from 2.5.4 to 2.6.0
m Upgraded Facebook Audio 360 from 1.3.0 to 1.4.0
m New method GetCurrentDateTimeSecondsSince1970() for getting the
absolute date-time of a video stream
m New method GetSeekableTimeRanges() returns an array of seekable
time ranges
m Fixed bug where only up to 255 video player instances could be
created
m Fixed issue where camera set to skybox clear mode would make OES
videos not appear, by changing shader to write to the depth buffer, just
like the other VR shaders do
OES mode now uses less memory and starts faster
Fixed bug when using Facebook Audio 360 where sometimes the
audio or video wouldn’t play
o macOs, iOS and tvOS
m New method SeekWithTolerance() offers fine seek control

90/90

m New method GetCurrentDateTimeSecondsSince1970() for getting the
absolute date-time of a video stream
m New method GetSeekableTimeRanges() returns an array of seekable
time ranges
m Fixed YCbCr support in shader used by 180 video demo
o Windows
m Improved adaptive stream resolution switch seamlessness by
eliminating the black frame flash
m Added DirectShow chunk-based file loading method to allow for
loading large files into memory without making large managed buffer
allocations. See LoadFromBufferInChunks.cs
m Fixed a bug when loading from buffer using DirectShow where
memory was deleted twice
m Fixed a D3D9 rendering bug that caused only the skybox to render on
some newer versions of Unity due to renderstate restore issues
Upgraded Facebook Audio 360 from 1.3.0 to 1.4.0
Various improvements when using the AudioOutput component,
including better AV sync and fixed glitching. Also added manual
sample rate setting for streaming videos.
m Improved UWP file loading demo script NativeMediaOpen.cs
o WebGL
m Changed the way textures are updated to hopefully be more
compatible
o General
m DisplayUGUI component now exposes Raycast Target field so videos
can allow touch/mouse input to pass through
m Added new events for video resolution change, stream stalling,
buffering and seeking
m Added SSL/HTTPS support to StreamParser
Various code refactoring and cleanup

Version 1.7.5 - 22 January 2018
o macOS
m Fixed build issue with Unity 2017.3 related to the post build script
m Fixed build issue with Unity 2017.3 related to universal/64-bit plugin
metadata
o macOS, iOS and tvOS
m Fixed a build issue with Unity 5.6.x related to a missing zlib
dependency
o Android
m Fixed stereo support in OES shader
m Fixed support for IsBuffering state in ExoPlayer
o Windows desktop
m Fixed a rare bug when using DirectShow and Unity 2017.3 that would
cause the video texture to display as a single channel or black
m Fixed a performance bug in the DirectShow player that meant a
paused video would continue to upload frames to the GPU

91/91

Version 1.7.4 - 28 December 2017
o WebGL
m Added support for URL'’s that start with “chrome-extension://”
m Fixed recent regression causing video to not render when not
rendering anything else
o i0S
m Plugin rebuilt with XCode 8.3.3 to work around linker missing
framework issue when building Unity apps using XCode 8 and
previous versions of the plugin that were compiled with XCode 9
m Fix to the ApplyToMaterial component when using YCbCr mode so the
default texture gets displayed correctly when the MediaPlayer is
closed
o General
m Added support for Facebook’s “360-capture-sdk” cubemap layout to
the CubemapCube component

Version 1.7.3 - 9 December 2017
o Windows
m Fixed a bug when using D3D9 that would cause the DirectShow video
to either render black or cropped. This was a regression since version
1.7.0
m Fixed DirectShow loading from buffer support for 32-bit builds
o WebGL
m Added support for error events
m Fixed issue where resampler could be enabled when it is not
supported for WebGL
o General
m Optimised SRT subtitle file parse to be much faster

Version 1.7.2 - 30 November 2017
o Known Issues
m There is a bug that causes video to appear black or cropped, only
when using Windows desktop with D3D9. This is fixed in 1.7.3
o Android
m Fixed two major GLES bugs which sometimes prevented the video
appearing. This mostly affected Galaxy S8 devices, Lenovo tablets
and anyone using the Vuforia plugin
m Added support for accurate seeking when using MediaPlayer API -
requires Android 8.0 Oreo
m Added support for HTTP/HTTPS redirects when using ExoPlayer API
o macOs, iOS and tvOS
m Added support for switching between multiple audio and video tracks
m Added support for querying audio and video track bitrate
o Windows Desktop
m Added the ability to set a list of preferred decoders for DirectShow.
This makes it easier to predict which decoder installed on the user's
system will be used. For example they could have many codec packs
installed, but you prefer to use the Microsoft decoders for stability
m When using the Use Unity Audio option, the video will no longer fail to

92/92

load if the audio is not able to pass through to Unity

m Fixed a bug where Facebook Audio 360 channel mode wouldn’t be
passed through to the plugin

m Fixed a shader bug causing Main10 videos in DirectShow to display
too dark

o General

m Added new HLSParser class to help parse HLS m3u8 manifests. This
allows for the discovery of all of the streams available, their
resolutions and bitrates

m Improved Facebook Audio channel mode enumeration Ul

Version 1.7.0 - 15 November 2017
o Known Issues
m There is a bug that causes video to appear black or cropped, only
when using Windows desktop with D3D9. This is fixed in 1.7.3
o Facebook Audio 360
m Added Facebook Audio 360 support for spatial audio in VR. Currently
we have support for Windows desktop (Rift, Vive etc) and Android
(Cardboard, GearVR, Daydream etc). Uses MKV videos with Opus
audio tracks encoded using Facebook Audio 360
o Windows Desktop
m Added Facebook Audio 360 support
m Added “Alpha Channel Hint” option to DirectShow for cases where
alpha channel is needed - currently required by Lagarith codec
m Added native NV12 support for legacy D3D9 with DirectShow - this a
performance optimisation, but also fixes some issues when using
subtitle rendering DirectShow filters (such as DirectVobSub) which
would cause the image to become flipped
Added Hap Q support for legacy D3D9 with DirectShow
Fixed a memory leak when an invalid Hap video (non multiple of 4
resolution) was loaded
m Fixed an issue where AudioOutput wouldn’t redirect audio to another
device (eg Rift Audio) for streaming media
m Fixed “Low Latency” option so it is actually used
o Windows UWP
m Fixed “Low Latency” option so it is actually used
o Android
m Added Facebook Audio 360 support (requires ExoPlayer API)
m Added ExoPlayer video API option which can offer improved format
support, including MPEG-DASH and in the future will include more
control over streaming video

o i0S/tvOS
m The YCbCr optimisation is now enabled by default
o WebGL

m Fixed issue with Safari on macOS calling Play() with default auto-play
permission disabled as outlined here:
https://webkit.org/blog/7734/auto-play-policy-changes-for-macos/

o General

93/93

https://webkit.org/blog/7734/auto-play-policy-changes-for-macos/

m Added new frame resampler option which can be used to get
smoother playback by buffering frames and presenting them at the
right interval. This feature does use more memory and is still in beta

m Fixed a bug where the FinishedPlaying event didn’t fire when a
second stream was played on the same MediaPlayer

m Fixed a bug where Instantiating ApplyToMaterial would cause a null
exception
Fixed compile error in Unity 2017.2 related to mobile multi-threading
Fixed warnings in Unity 2017.2 related to API changes to
playModeStateChanged

m Changed shader line endings to Unix to prevent mixed line ending
warnings
Inspector Ul improvements
Documentation updates

Version 1.6.15 - 5 October 2017
o Windows
m Fixed an issue mainly affecting Windows mixed reality and VR
headsets using “hybrid-gpu” mode where more than one GPU is
available to the system
m Fixed the WSA 8.1 x86 DLL that didn’t get recompiled since 1.6.12

Version 1.6.14 - 23 August 2017
o macOS /iOS /tvOS
m Fixed issue where audio-only media would not update current time
m Improved error reporting
o iOS
m Fixed texture error when using Unity 4.x
o Android
m Fixed file offset not working for videos in StreamingAssets folder. Until
now file offset only worked for files at other locations in the file system
o Windows
m Fixed regression introduced in 1.6.12 that would cause DirectShow
videos to not play when using Direct3D9 or OpenGL
m AudioOutput component now handles different sample rates and
channel counts set in Unity’s audio settings and automatically detects
number of audio channels in source media

Version 1.6.12 - 6 July 2017
o Known Issues
= On Windows when using DirectShow and Direct3D9 or OpenGL,
videos do not display and VRAM runs out. This is a regression
introduced in this version and is fixed in 1.6.14
o Android
m Fixed a rare crash bug that could happen during seeking
o Windows Desktop / UWP
m Added new low latency option for Media Foundation which provides a
hint to the decoder to do less buffering
o Windows Desktop

94 /94

m Added support for 10-bit HDR video decoding (Main10) when using
DirectShow any suitable decoder such as LAV Filters. The decoding
still resolves to an 8-bit texture but we plan to add 10-bit or floating
point texture resolve soon

m Fixed a crash bug when using DirectShow and LoadFromBuffer to
load a video from memory

o General

m ExtractFrame() method now faster and more accurate

m Time Scale support (where a non-realtime video capture solution
changes Time.timeScale or time.captureFrameRate) has been
improved, making it faster and more accurate
Added new 180 degree sample video
Fixed a bug in AudioOutputManager when channel count <=0

Version 1.6.10 - 14 June 2017
o i0S
m Improved support for iOS 8.0 by fixing an issue with CoreVideo
Android
m Fixed issue where loading over 255 videos would cause videos to no
longer load correctly
Windows Desktop / UWP
= The AudioOutput component now supports routing audio to a specific
channel, or to multiple channels. It also now supports multiple
instances so you can more easily have audio coming from different
world positions.
m Fixed a memory leak when using AudioOutput component
Windows Desktop
m Added new function to load media from memory for DirectShow API.
This is demonstrated in the scriptlet LoadFromBuffer.cs
General
m Started adding a new 180 degree video playback demo, it just lacks a
media file which will come in the next release.
Videos with auto-start enabled no longer fire the ReadyToPlay event.
Added new method ForceUpdate() to ApplyToMesh component which
refreshes the material when changing media properties such as stereo
packing.

o

o

o

o

Version 1.6.8 - 31 May 2017
o i0S/tvOS
m No longer requires a separate plugin file for Unity 5.3 and below. New
bootstrap C code handles the change in Unity’s plugin API.
m Improved Metal compatibility with older versions of Unity
o General
m The AudioOutput component has some new experimental changes,
including the ability to have multiple AudioOutput instances and to
remap which channels the audio outputs to

Version 1.6.6 - 25 May 2017
o General

95/95

m PlayMaker (the popular visual scripting system for Unity) is now
supported by AVPro Video. We have added over 64 new PlayMaker
actions for seamlessly integration into your PlayMaker workflow
Added audio stereo balance support
Added new stereo packing mode that uses a pair of UV sets for
custom left and right mapping.

m Added new Support & Help window to make reporting issues easier
and to include helpful diagnostic information

m Added documentation about 3rd-party library usage

m Added documentation about iOS video decoders

o Windows Desktop
m Added multi-threaded decoding for chunked Hap videos
o Windows Store / UWP / Hololens

m Added new function to load media from native file locations using
IRandomAccessStreamWithContentType. This means you can now
play media from the camera roll. See the example script in
Demos/Scripts/Scriptlets/NativeMediaOpen.cs for details of usage.

o Android

m Fixed lost GLES context issue that can happens at least when
switching Google Cardboard on/off

m Fixed one of the OES shaders that was failing to compile on Android
due to undefined TRANSFORM_TEX macro

m Refactored some of the low-level code

m Added support for headphone connection changes. Unplugging /
connecting headphones will now correctly set state of the video so
that IsPaused() and IsPlaying() return the correct value

m Fixed a rare bug in the VCR demo script which caused the
FinishedPlaying event not to fire due to triggering a Seek() at the end
of an HLS stream

o i0S/tvOS / macOS

m Fixed frame flash issue due to FirstFrameReady event firing too early

due to frame count increment bug

Version 1.6.4 - 5 May 2017
o Windows Desktop
m Fixed an intermittent bug introduced in version 1.6.2 which caused
videos to sometimes not appear or appear black

Version 1.6.3 - 3 May 2017
o Windows Desktop
m Fixed mistake from 1.6.2 which included a Visual Studio 2015
dependency (the OpenMP vcomp140.dll)
m Chunked Hap decoding is now no longer multi-threaded. We will add
this optimisation back in 1.6.6
m Added some notes to documentation about Windows N / KN editions
o Known Issues
m There is an intermittent bug in Windows desktop which causes videos

96 /96

to not appear or to appear black sometimes - fixed in 1.6.4

Version 1.6.2 - 25 April 2017
o i0S/tvOS
m Added support for Y'CbCr Biplanar textures which results in less
memory usage. This feature means older devices with only 1GB of
RAM (iPhone 5+, iPhone6+) will no longer struggle with memory when
playing back 4K video content.

Platform Specific

Cwverride Path

m Tweaks which hopefully fix a rare flickering issue for Metal when using
multi-threaded rendering
m Fixed shader compile issue for legacy Unity 4.x

o macOS
m Fixed bug for high resolution Hap decoding due to apparent bug in
Apple OpenGL extension
m Fixed an issue with transparent ProRes video
o Android

m Fixed bug that would cause video to not display when using the Mask
uGUI component

m Fixed OES GLSL shader support for Unity 5.5.2

m Fixed shader compile issue for legacy Unity 4.x

m Reported bug in Unity 5.6.0f3 support for GLSL (OES) shaders

o Windows

m Performance improvement for Hap codec when using “chunks”
encoding option. Now decoding happens over multiple threads.

m Added support for the “-force-d3d11-no-singlethreaded” command-line
parameter which doesn’t require the use of a new D3D context with a
shared texture in the MF-Hardware path

m Media Foundation code refactored

o General

m Fixed bugs in NGUI script, previously it could crash when changing
videos

m Fixed very specific bug related changing texture quality settings while
the MediaPlayer is disabled which would cause texture to become
black. Removed the global setting that disabled the above texture
quality fix as it no longer has a performance benefit

= Improved Ul of ApplyToMesh component with custom editor

97 /97

Some shaders now default to black textures instead of white
Added basic playback controls to the debug Ul
Added documentation about AMD hardware decoding (UVD)
capabilities

m Added support for Unity 2017 beta

o Known Issues

m Windows desktop - this release includes a Visual Studio 2015
OpenMP dependency by mistake (vcomp140.dll) which means that
the Visual Studio 2015 runtime must be installed. Fixed in 1.6.3

m There is an intermittent bug in Windows desktop which causes videos
to not appear or to appear black sometimes. Fixed in 1.6.4

e Version 1.6.0 - 29 March 2017

o i0S/tvOS
m Added support for linear color-space (available in Unity 5.5 and
above)

m Performance improvements, especially when reusing MediaPlayer
component to load videos

m iOS simulator support added

o macOS

m Added support for Hap Q Alpha format (HapM)

m Performance improvements, especially when reusing MediaPlayer
component to load videos

o Android

m Fixed OES rendering path support in Unity 5.6

m Improved linear colour-space support (available in Unity 5.5 and
above)

m Performance improvement due to alternative way to get around
checking GetNativeTexturePtr() and instead checking for when texture
quality level changes

= Removed unused AndroidManifest.xml file

o Windows

m Performance improvement due to alternative way to get around
checking GetNativeTexturePtr() and instead checking for when texture
quality level changes

o General

m Fixed DisplayIMGUI component depth value not working

= Improved IMGUI linear color-space conversion function

e Version 1.5.28 - 24 March 2017

o Windows
m Added support for HapQ+Alpha format
m Fixed Unstalled event not firing

o macOS /iOS /tvOS
m Added support to ExtractFrames demo to handle videos containing

rotation

= Minor C# performance improvements

o WebGL

98/98

m Fixed support for Safari browser

m Added documentation about supported browsers
o General

m Added some DRM notes to the documentation

m Fixed PlayMaker example script

Version 1.5.26 - 14 March 2017
o Android
m Added support for passing custom HTTP header fields
m Fixed minor bug when calling SetPlaybackRate too soon
= Android API 15 (4.0.4 Ice Cream Sandwich) is now supported,
previously API 16 (4.1 Jelly Bean) was required
m Added plugin files for the arm64-v8a platform (currently disabled in the
inspector, but simply enable it once Unity has added support for this
architecture)
o macOS /i0S /tvOS
m Added support for passing custom HTTP header fields
m Added support for videos containing orientation data. The orientation
transform is now retrievable and the uGUI display component correctly
displays the video
o WebGL
m Fixed bug in Internet Explorer and Firefox where video would not
display
m Added support for displaying multiple ranges of buffered time
o Windows / WSA / Hololens
m Fixed FinishedPlaying rarely not firing on Media Foundation
o General
m DisplayUGUI component no longer generates any garbage when
vertices are dirtied. Also some minor optimisations
ApplyToMesh component no longer generates any per-frame garbage
ApplyToMesh component has improved interface
Improved time display in the editor to be millisecond accurate, and
also fixed time rounding error bug
m Changed EnableSubtitles() to return true while it is loading in a
coroutine
m Added new example script VideoTrigger that shows how to trigger
videos when entering/exiting collider volumes, including audio fading
m Added more streaming video URLs to documentation

Version 1.5.25 - 20 February 2017
o Windows Desktop
m Patch fix for regression in 1.5.24 which caused DirectShow videos to
display in green

Version 1.5.24 - 19 February 2017
o General
m Shaders improved to also work on older hardware that only support
shader model 2.0
o Windows Phone / WSA / UWP / Hololens

99/99

Added support for audio to be played through Unity’s audio system
Fixed a serious bug which could cause video to not appear and native
plugin functions to return incorrect values
m Fixed the hardware decoding option not being passed through to the
plugin correctly
m Fixed support for older GPUs that only supported D3D11 feature set
9.x
m Trial version watermarking optimised for speed and memory
o Windows Desktop
m Fixed support for older GPUs that only supported D3D11 feature set
9.x
m Trial version watermarking optimised for speed and memory
o Known Issues
m Regression in this version causes Windows DirectShow decoded
videos to display green. Fixed in v1.5.25

Version 1.5.22 - 14 February 2017
o General
m Improved performance of CubemapCube component. Due to a typo it
would previously regenerate the cube mesh each frame.
m Improved the fix for Unity 5.4.2 and above where changing texture
quality during runtime would cause the video texture to turn black.
The expensive fix now doesn’t apply to Unity 5.4.1 and 5.4.0, and can
be disabled in the global options
m Fixed bug in subtitles that would cause them to go blank for a frame
o Workflow
m Android OES path now displays hint about using correct shaders
m Error message display is more detailed
m Improved user feedback when selecting stereo packing to warn about
the need for the UpdateStereoMaterial component
= Improved Ul for UpdateStereoMaterial component to give more
feedback about its setup
o Android
m Better reports error when a video fails to decode due to insufficient
resources
m Added option to not show the “poster” frame, leading to faster start
and less resource usage for loaded videos. A video that is loaded but
not played and not displaying the poster frame will not engage the
decoder hardware and use up resources
m Saved some memory in OES mode by no longer allocating
unnecessary render texture
= Improved playback rate timer
o WebGL
m Fixed issue where no video displays when using WebGL 2.0 (default
in Unity 5.5.0 and above)
m Cached texture pointer for improved performance
m Fixed subtitle loading by changing to use a coroutine
o Windows

100/100

m Added new events for when a stream has stalled and resumed -
useful for detecting connection loss when live streaming
m Added new option to generate texture mipmap levels automatically -
this reduces aliasing when the texture is scaled down
m Updated Snappy library (used in Hap codec) to latest 1.1.4 which has
20% decompression speedup
m Fixed bug in DirectShow where calls to SetMuted() or setting very low
audio volume would be ignored
o UWP / Windows Phone / Hololens
m Added new option to generate texture mipmap levels automatically -
this reduces aliasing when the texture is scaled down
o Breaking Changes
m For Android if you previously loaded videos in a paused state to see
the initial “poster” frame now you’ll need to tick the new “Show Poster
Frame” option in the Platform Specific settings. In previous versions
this was enabled by default, but now it is disabled by default as it has
performance implications.

Version 1.5.20 - 25 January 2017
o General
m Added more notes to the Hap codec documentation
m Added more notes to the Android OES documentation
o Android
m Fixed fast OES rendering path in Unity 5.4.x and 5.5.x
Fixed various stereo rendering issues
Fixed OES GLSL shaders failing to compile due to inline keyword
Fixed OES path displaying debug GUI panel
Fixed OES shader compiling on Google Daydream platform
Fixed Unity 5.6beta GearVR stereo rendering issue
Disabled minor Daydream stereo eye shader optimisation as it was
causing too many problems with older versions of Unity
o Windows
m Fixed bug where changing playback rate when playback has finished
would result in an error
m Fixed the DirectShow audio volume level so it matches that of Media
Foundation

Version 1.5.18 - 18 January 2017
o General
m Added support to UpdateStereoMaterial for DisplayUl component so
that uGUI can render stereo videos correctly
o WSA/UWP / Hololens
m Fixed a script compile error introduced in 1.5.16

Version 1.5.16 - 16 January 2017
o General
m Optimised stereo left-right shader for Google VR support
m Improved shaders to use UnityObjectToClipPos() instead of

101/101

UNITY_MATRIX_MVP to give better support for Unity 5.6 and above

m Fixed bug in stereo left-right shader introduced in 1.5.14

m Fixed various bugs in subtitle support
o Android

m Fixed subtitles not loading
o Known Issues

m Regression from 1.5.14

e WSA and UWP platforms will fail to compile due to new
Thread.Sleep() which isn’t defined on these platforms.

Version 1.5.14 - 9 January 2017
o General
Added subtitle support for external SRT files
Added a new demo showing the new subtitle support
m Improved 03 _Demo_VideoControls demo scene to use two
MediaPlayers for seamless playlisting
m Fixed issue where initial playback fields (volume, mute, playback rate,
looping) could be reset to incorrect values in certain cases such as
such AutoOpen option was disabled
m Shader improvements such as inlining for performance, sRGB to
Linear shader corrections and optimisations
o iOS
m Added documentation note about using AAC instead of MP3 for the
audio tracks
o WSA/UWP / Hololens
m Fixed bug where video would often not appear, due to audio track
being loaded first and reporting metadata loaded. This appears to be
a bug/change in the new Anniversary UWP Media Foundation version.
m Plugin DLL file sizes are smaller
o Windows Desktop
m Plugin DLL file sizes are smaller
o Known Issues
= Regression from 1.5.12
e Bug in stereo shader causing only left eye to render
m Subtitles
e New subtitle feature doesn’t load files from StreamingAssets
on Android and WebGL
e Bug in script don’t allow subtitles to be loaded via code

Version 1.5.12 - 12 December 2016
o WSA /UWP / Hololens

m Fixed crash issue when using Unity 5.5

Version 1.5.10 - 9 December 2016
o macOS
m Fixed issue where OpenVideoFromFile() called multiple times quickly
would cause a crash
m Removed PLIST modification from the PostProcess build script
o iOS

102 /102

m Fixed issue where OpenVideoFromFile() called multiple times quickly
would cause a crash

m Fixed issue with Unity 5.5.x which caused XCode project not to run
due to missing Metal symbol (only affects watermarked trial version)

m Fixed issue where OpenVideoFromFile() called multiple times quickly
would cause a crash
m Fixed issue with Unity 5.5.x which caused XCode project not to run
due to missing Metal symbol (only affects watermarked trial version)
o Android
m Fixed issue with Unity 5.4.2 and above where changing the
TextureQuality level in the QualitySettings would cause the texture to
go black
o Windows
m Fixed issue with Unity 5.4.2 and above where changing the
TextureQuality level in the QualitySettings would cause the texture to
go black
o General
m Added support to uGUI shaders for RectMask2D
m ApplyToMesh component now works with other renderer components
(eg Skinned Mesh)
m Updated documentation and FAQs

Version 1.5.8 - 23 November 2016
o macOS
m Fixed issue with OpenGLCore where texture wouldn’t update due to
GL state not being restored correctly when using a uGUI mask
m Fixed issue where RelativeToProjectFolder was pointing to inside the
.app package instead of at the same level
o Android
m Streaming video no longer blocks while loading (but video frame-rate
may now not be available)
m Removed duplicate function call, minor performance win
m Fixed number of audio tracks reported for streams
m Fixed potential case issue with URL detection

o Windows
m Platform specific settings exposed better in the editor
o General

m Fixed some shader build errors for older versions of Unity

m Added some in-editor warnings for using unsupported file extensions
on various platforms

m Fixed broken scripting reference link in ‘About’

Version 1.5.7 - 16 November 2016

o Android
m Minor optimisation for non-OES rendering path by eliminating blending
during blit

m Added frame timestamp support via

103/103

TextureProducer.GetTexture TimeStamp()
o macOs, iOS and tvOS

Added support for OS X 10.8

Added frame timestamp support via

TextureProducer.GetTexture TimeStamp()

m Fixed issue when Seek and Play were called before another

command had completed
Fixed issue of events not firing
Added support for custom URL schemes
Improved support for device simulator
Various small bug fixes

Version 1.5.6 - 8 November 2016
o General

m Added “Scale and Crop” scaling mode to uGUI component (replaces
old “keep aspect ratio” option)

m Added helper function for seeking to a specific frame

m Improved MediaPlayer event handling code

m Fixed null exception when unloading scene from the event callback

o Windows

m Fixed major issue using hardware decoding which caused videos to
crash or not load

m Improved DirectShow colour reproduction by using more accurate
linear colour-space and YUV conversion functions

m Added ability to get the presentation timestamp of the current video
frame - useful for more accurate frame syncing:
TextureProducer.GetTexture TimeStamp()

m Fixed issue with HLS streaming crashing when changing stream
quality and resizing texture

m Fixed AudioOutput issue where playing back multi-channel videos
would cause the video not to load

m Fixed AudioOutput issue where some videos would play back at the
wrong pitch

Version 1.5.5 -1 November 2016
o Windows
m Fixed issue on old Windows versions without D3D11 which caused the
plugin to not load
o WebGL
m Fixed width and height being zero when MetaDataReady event fires

Version 1.5.4b - 31 October 2016
o Fixed broken iOS, tvOS and macOS release from v1.5.4
o Fixed “null id” error in in multi-video demo in WebGL builds

Version 1.5.4 - 28 October 2016
o General
m 02 Demo_imGui demo scene updated to show network streaming
progress

104 /104

Improved how destroyed MediaPlayer components are shut down
Fixed alpha packing in background transparent shader
Fixed some bugs in three of the sample scene scripts that would
cause a crash due to null values or invalid textures left behind when
destroying MediaPlayer
m Added documentation about hardware GPU decoding
Android
m Fixed bug where IsPlaying would return false during playback
m Fixed a shader compiler error for newer Android phones with
Snapdragon chipset when using the OES shaders
Optimised code to generate less garbage
Some internal JNI caching for speed
m Added new unlit OES shader
macOS
m Added support for Linear colour space
m Improved feedback when progressive and streamed movies are
buffering
m Added support for macOS 10.12 streaming auto wait behaviour
iOS and tvOS
m Fixed a case where some HLS streams wouldn’t play
m Improved feedback when progressive and streamed movies are
buffering
m Added support for iOS/tvOS 10 streaming auto wait behaviour
Windows
m Added new AudioOutput component so that audio can be played
directly through a Unity AudioSource node. This allows Unity audio
effects to be used, spatial 3D movement with falloff and doppler, and
most importantly allows sound to move with the head in VR!
m Fixed a visual glitch when using the hardware decoder path, most
noticeable at the end of videos
m Streaming can now return multiple buffered ranges using method
GetBufferedTimeRange()
Windows watermark improved for GPU decoding path
Potential fix for DirectShow seeking issue causing hanging on some
systems
VR
m Support for 3D audio via the new AudioOutput component (Windows
only, supports Oculus Rift and HTC Vive)
m InsideSphere transparency shader now supports transparency
packing

Version 1.5.2 - 11 October 2016

(¢]

General
m uGUI and IMGUI components now automatically displays videos with
stereo or alpha packing correctly without having to assign material
manually
Fixed shader build errors in Unity 5.4.1
Fixed shader build errors in Unity 4.x for D3D9 and OpenGL

105/105

m Added stereo support to more shaders including uGUI
o Workflow
m Improved component menu layout by grouping components
m Logging improved so some log messages can be clicked on to
highlight the logging MediaPlayer
o Windows
m Linear colour space now automatically rendered correctly when using
GPU decoder
Fixed memory leak in GPU decoder introduced in v1.5.0
Fixed old memory leak in Notify system
Fixed HLS adaptive resolution changing when using GPU decoder
and improved texture switch to remove 1 frame glitch
o WebGL
m Cubemap script fixed to not show texture seam
m Texture filtering and wrapping modes applied correctly now
m Added crossOrigin="anonymous” to video element

Version 1.5.1 - 30 September 2016
o Windows
m Fixed crash bug when playing audio files in DirectShow path
m Fixed visual flicker bug in Unity editor in DirectShow path

Version 1.5.0 - 29 September 2016
o General
Added new shader for uGUI to support stereo videos
Added global option to disable logging
Added audio track selection to IMGUI demo
Fixed editor bug where “\” character could be used in file path
m Updated documentation
o Android
Added display of initial “poster” frame for videos set to not auto-play
Fixed bug that prevented files with escape characters from loading
Fixed bug causing audio files to not play
Fixed issue where GetCurrentTimeMs() could report values greater
than Duration
o macOS
m Fixed no error being returned for loading videos without correct plist
permissions set
o Windows
m Hardware decoding enabled by default
m Hardware (GPU) decoding no longer require command-line parameter
m Better video API selection in editor
m Added support for multiple audio tracks to DirectShow playback path
via IAMStreamSelect.
m Added Media Foundation multiple audio track code back in
m Fixed some minor resources leaks
o Windows Phone / UWP
m Added option for hardware decoding (enabled by default)

106/ 106

(0]

WebGL

Added support for multiple audio tracks

m Fixed frame rate and count not displaying

m Fixed issue where multiple videos wouldn’t unload cleanly
m Cleaned up plugin code, removing unneeded code

Version 1.4.8 - 12 September 2016

(o]

o

General
m Less garbage generation
e Optimised ApplyToMesh component
e Optimised rendering coroutine of MediaPlayer component
e Added global option to disable debug GUI
Workflow
m Improved file path display and editing
m Added watermark description to trial version
VR
m Cubemap script (for 3:2 cubemap VR)
e Fixed vertical flip issue
e Improved performance
m Added fog and transparency options to VR sphere shader
m Android OES optimisation (see below)
m Shaders support GLSL better
Android
m New faster rendering path, less memory, faster, no overheating - see
OES playback path notes above
m Added ability to load file from within another file by specifying an offset
e Which lets you hide video files from prying eyes
macOS
m Fixed occasional memory leak when destroying player
m Fixed editor warning about absolute path
iOS / tvOS
m Fixed occasional memory leak when destroying player
Windows
m HLS streams now dynamically adjust texture size
e Resulting in support for higher quality streams
e Fixes issue where videos would become letterboxed
WebGL
m Fixed broken build issue when using the “use pre-built” build option

Version 1.4.4 - 20 August 2016

o

General
m Packed transparency support added

e Use top-bottom or left-right packed layout to encode alpha
channel

e Set the packing type in the “Media Properties panel”

e Supported by all display components automatically

e See “Transparency Notes” section of this document for
encoding tips

107 /107

m “Platform Specific” section now highlights platforms with modified
settings

m Minor optimisations to the ApplyToMaterial and ApplyToMesh
components (used property ints instead of strings)
Minor optimisation to DisplaylMGUI (disables layout pass)
Fixed CubemapCube.cs to handle vertically flipped video textures
Changed many components to use UpdateLate() instead of Update()
to fix some crash issues

m Various minor improvements

o macOS
m Fixed compatibility issue with OS X 10.10 (Yosemite)
o Windows

m Huge performance improvements when using DirectShow playback
path due to usage of NV12 format (D3D11 only)
Added support for Hap Q format (D3D11 only)
Added performance warning message when using software decoder
instead of GPU decoder for large videos
m Fixed bug in DirectShow audio mute not restoring volume
o WebGL
m Fixed issue where IMGUI text became flipped
o Upgrade Notes
m Some shader files have moved (and been renamed) from /Materials
and /Demos/Materials to /Resources/Shaders, so make sure to delete
duplicates that results from merging

e Version 1.4.0 - 10 August 2016

o WebGL
m WebGL platform support added
o macOS

m Now with Metal rendering support
m The Hap codec is now supported on macOS
o i0S/tvOS
= Metal rendering path now supports multi-threaded rendering
m Various fixes to rendering and memory resources

o Android
= Ability to adjust the playback rate (Android 6.0 and above only)
o Windows

m Fixed audio device override not working in builds

m Fixed fast seeking function
o General
Added support for video files containing multiple audio tracks
Video frame rate is now available via Info.GetVideoFrameRate()
Fixed some issues with events firing at the wrong time
Streaming videos can now query IsBuffering() and
GetBufferingProgress()
Improved errors reporting
Renamed Info.GetVideoPlaybackRate() to GetVideoDisplayRate() to
avoid confusion

108 /108

o

O

New “scriptlets” have been added to the /Demos/Scripts folder which
give mini examples of how to do simple scripting

VR
m Fixed bug in stereo section of VR sphere shader which caused eyes
to flip on some platforms
m Fixed a bug in Windows where the audio override wasn’t being
passed through for VR headphone device name
Workflow

Added new “SA” button for shortcut to StreamingAssets folder
Improved editor inspector performance

Upgrade notes

Demos scenes have been renamed so you should delete the old .unity
files in the /Demos folder otherwise you will have duplicate files.

The sample video files in StreamingAssets have been moved into a
subfolder within StreamingAssets/AVProVideoDemos/ so make sure
to delete the old ones.

Version 1.3.9 - 15 July 2016
Android

(e]

(¢]

(o]

o

Fixed bug for Unity versions < 5.2.0 that caused videos not to display
Fixed bug for Android versions < 6 that caused video pausing and
other operations to break playback

Removed zip classes from plugin package to fix conflicts with other
plugins using the same zip classes

General

Better error handling via new GetlLastError() function and a new Error
event type

NGUI support added via new component

TimeScale support feature now disabled by default and exposed in
new Global Settings panel

ApplyToMesh/Material script improved with new scale and offset
parameters

Added platform overrides for Windows Phone and Windows UWP
Improved documentation

Workflow

VR

Added new Android warning for loading absolute path without external
permission set in PlayerSettings

Fixed VR audio output device not working

New high quality option for sphere shader to improve quality at the
poles and general optimisations

Fixed issue with left/right eyes becoming swapped sometimes
Minor fixes to cube map script

Version 1.3.8 - 30 June 2016
Bug fixes

(¢]

Fixed stereo VR script broken in v1.3.6
Fixed issues with UWP and Hololens support

109/109

Fixed Windows DirectShow issue preventing Hap videos playing when
another source filter is installed
Fixed Windows DirectShow bug in watermark for Hap videos

o Workflow

Improved recent file list to be sorted by when the files were last used

e Version 1.3.6 - 27 June 2016
o General

Added (BETA) support for Universal Windows Platform 10 and
Windows Phone 8.1

Added (BETA) support for Time.timeScale and Time.captureFramerate
allowing video playback to work properly with video capture systems
that alter Unity time

Added ExtractFrame function to MediaPlayer

Added Extract Frames demo scene

Added SeekFast function which will try to seek to keyframes only so
it's less accurate but faster. On unsupported platforms it will just do a
normal seek operation

Added functions to change the playback rate. Note that the behaviour
of this varies between platforms and is not available yet on Android
General API improvements, platform overrides system improved

Fixed bug where disabled gameObject would cause rendering to stop
Fixed bug where destroying MediaPlayer while uGUI component is
using it could cause a crash

Fixed rare bug where uGUI component would become offset or hidden
Fixed rare bug where m_events would be null

Fixed VR sphere shader coordinates on some platforms, especially
cardboard

Added “Media Properties” section to MediaPlayer where you can
define the stereo packing of a video. This then automatically adjust
the sphere shader to render the video correctly per eye

Fixed bug in InsideSphere shader where stereo rendering would flip
the eyes at some angles

Added support for Unity 5.4 “Single-Pass Stereo Rendering” to 360
InsideSphere shader

Added new VR sample with “cubemap 3x2” (facebook layout) support

o Workflow

Added button in preview panel to save frame to PNG

Added persistent option to preserve the media player between level
loads

Added multi-object MediaPlayer component editing support
Texture properties (wrap mode, filtering) can be set via Media
Properties panel

Debug GUI now shows preview of video

o Android

Fixed bug where no visuals would appear when old devices
Switched from AAR to JAR/SO files to improve Unity 4 compatibility

110/110

Added x86 support
Fixed bug where Pausing a stopped video would lock it up

o OSX/iOS/tvOS

Large performance boost on iOS and tvOS (removed texture copy)
Streaming video buffering stalls now recover and IsBuffering function
added

Seek accuracy improved

Looping handled better to reduce seam time

Fixed texture memory leak in Metal rendering path

Fixed mute not working with autoStart

o Windows

DirectShow video playback smoother

Fixed DirectShow support for showing images or videos with zero
duration

Added platform-override option to force DirectShow player

Added platform-override option to force audio output device. This is
useful for VR hardware that has its own audio device.

Fixed poster frame not displaying

Fixed videos not displaying due to empty RGB32 alpha channel
Fixed D3D9 lost device issue

Fixed D3D9 issue of texture not being released

Fixed DirectShow player time displaying NaN sometimes at the end of
video

Fixed crash bug if you closed Unity with video was playing

Fixed Windows N edition crash

e Version 1.3.0 - 20 April 2016
o Android

Added multi-threaded rendering support
Fixed various rare bugs

o Windows

n
o i0S

Exposed GPU video player path (when using command-line argument
“-force-d3d11-no-singlethreaded”), this requires Win8.1 minimum and
D3D11

Windows XP, Windows Vista and Windows 7 support added by adding
DirectShow playback path

Hap1 and Hap5 codec support added for Windows 7 and below (via
DirectShow playback path)

Fixed audio only media not being seekable

Fixed iOS 8.2 compatibility issue

o Workflow

Editor pause button now pauses/resumes playing videos
Added new ‘about’ section with handy links
Improvements to editor Ul

Ul fixes for standard Unity editor ‘light’ skin

Fixed IsFinishedPlaying event not firing on some platforms

M /1M1

m Fixed player freezing when component is disabled. It now pauses
OnDisable() and resumes OnEnable().

m Fixed crash in VCR demo related to uGUI component when changing
videos

m Fixed bug closing application with many videos open

m Fixed seeking bug for audio-only media

Documentation
m Updated FAQ
m Added stereo virtual reality notes

Version 1.2.0 - 1 April 2016

General
Improved support for audio-only media
Improved streaming support
Added HasVideo, HasAudio and HasMetaData functions
Added MetaDataReady event
First frame now displays without starting playback
Added new ApplyToMesh component
= Removed troubled #AVPRO defines
Android
m Fixed issue where Finished event wouldn’t fire
m Minimum API level bumped from 15 to 16
Mac, iOS, tvOS
m improved performance of multiple video playback
Windows
m Improved performance (duplicate frame handling)
Added missing IsSeeking function
Fixed IsFinished function always returning false
Fixed URL parsing
Fixed OpenGL texture cleanup
Fixed minor D3D11 leak caused by views not being released
m Improved init/deinit
Workflow
m Resulting file name is now displayed clearly and is copyable
m More file extensions in inspector file browser
= Components now have AVPro icon
m Added warnings for incorrect Player Settings for streaming videos
m Editor platform override tab is restored
Debugging
= Improved logging
VR
m Improved 360 Sphere demo support for GearVR
m InsideSphere shader has color tint option for stereo debugging

m Added video streaming notes
= Added VR notes
m Improved notes on supported formats

Version 1.1.0 - 11 March 2016

12/112

o Added Windows support
Added lat-long stereo top-bottom and left-right video support for VR
Added per-platform file path overrides
Absolute and relative path loading support added
Android loading from OBB support added
Workflow improvements
m Added browse button
= Added recent file list
m Added relative folder support
m Improved MediaPlayer Ul, including preview in editor
Created a scripting class reference
Improved documentation
Fixed Linear colour space support in Windows
Fixed shutdown and memory freeing
Various bugs fixed

e}

o O O O

e}

o O O O

e Version 1.0.0 - 25 February 2016
o Initial release on the asset store
o Added new events

e Version 0.9.0 - 17 February 2016
o Initial beta release

Appendix C - Roadmap

e Version 2.0.0
o High quality glitch free multi video player with optional transitions and nice
user interface

e Version X.X.X

Split out media definitions from player

Loading from memory/resources

Fallback to using MovieTexture/VideoPlayer on some platforms?
10-bit / HDR support?

o

o O O

e \Version X
o« Your suggestions here, let us know :)

Appendix D - Unity Bugs

Some versions of Unity have new bugs or regressions that prevent AVPro Video from
operating as expected.

In our experience it's best to avoid using new major releases of Unity (eg version X.Y.0) and
wait for the follow-up releases where bugs introduced in the major update have had time to

113/113

be fixed.

Please vote and comment on these issues so they get high priority to be fixed.

e Unity 5.6.0f3 - Present

o

Has an Android bug that prevents GLSL shaders from compiling, which
prevents our OES rendering path to work. This is fixed now:
https://issuetracker.unity3d.com/issues/android-ios-glsl-shader-compilation-fai
lure-on-some-mobile-devices

Latest version where it works it 5.5.4

Single-pass stereo mode on the Android GearVR introduces strange shader
bugs on some platforms. We added two bug reports, but it won'’t be fixed as
it's a mobile GPU driver issue, so hopefully the drivers got fixed:
https://issuetracker.unity3d.com/issues/android-gearvr-left-eye-is-rendered-wi
th-green-distortions-when-using-single-pass-stereo-rendering-method-star-on
-mali-gpu
https://issuetracker.unity3d.com/issues/android-gearvr-both-eyes-are-rendere
d-in-the-same-color-when-using-single-pass-stereo-rendering-method-star-on

-mali-gpu

e Unity 5.x - Present

(¢]

Support for Android OBB (split application binary option) seems slightly
broken in many versions of Unity. It seems to try to load OBB content from
the APK file, so it’s as though it’s resolving Application.streamingAssetsPath
incorrectly. It appears that the first time you deploy to the Android device it
works but then subsequent builds will fail. Uninstalling the application from
the device and building to a new APK file seems to solve this.

e Android OES Texture Support

o

o

OES Textures used to work reasonably well, but in some versions of Unity
they no longer work:
https://forum.unity3d.com/threads/android-oes-texture-support.436979/

e Android Cardboard in Unity 2017.3.1

o

Unity temporarily broke Cardboard support for non-Daydream devices around
these versions:

2018.1.0 b3 - Fixed in 2018.1.0 b12

2017.3.1 p1 - Fixed in LTS 2017.4.1 f1

2017.2.1 p3 - Fixed in 2017.2.2 p3

2017.1.3 p1 - Fixed in 2017.1.3 p3
https://forum.unity.com/threads/for-people-targeting-cardboard-on-android-ple
ase-update-your-google-vr-sdk-to-1-12-or-later.520986/

114/ 114

https://issuetracker.unity3d.com/issues/android-ios-glsl-shader-compilation-failure-on-some-mobile-devices
https://issuetracker.unity3d.com/issues/android-ios-glsl-shader-compilation-failure-on-some-mobile-devices
https://issuetracker.unity3d.com/issues/android-gearvr-left-eye-is-rendered-with-green-distortions-when-using-single-pass-stereo-rendering-method-star-on-mali-gpu
https://issuetracker.unity3d.com/issues/android-gearvr-left-eye-is-rendered-with-green-distortions-when-using-single-pass-stereo-rendering-method-star-on-mali-gpu
https://issuetracker.unity3d.com/issues/android-gearvr-left-eye-is-rendered-with-green-distortions-when-using-single-pass-stereo-rendering-method-star-on-mali-gpu
https://issuetracker.unity3d.com/issues/android-gearvr-both-eyes-are-rendered-in-the-same-color-when-using-single-pass-stereo-rendering-method-star-on-mali-gpu
https://issuetracker.unity3d.com/issues/android-gearvr-both-eyes-are-rendered-in-the-same-color-when-using-single-pass-stereo-rendering-method-star-on-mali-gpu
https://issuetracker.unity3d.com/issues/android-gearvr-both-eyes-are-rendered-in-the-same-color-when-using-single-pass-stereo-rendering-method-star-on-mali-gpu
https://forum.unity3d.com/threads/android-oes-texture-support.436979/
https://forum.unity.com/threads/for-people-targeting-cardboard-on-android-please-update-your-google-vr-sdk-to-1-12-or-later.520986/
https://forum.unity.com/threads/for-people-targeting-cardboard-on-android-please-update-your-google-vr-sdk-to-1-12-or-later.520986/

