{ "cells": [ { "cell_type": "code", "execution_count": 12, "id": "initial_id", "metadata": { "collapsed": true, "ExecuteTime": { "end_time": "2024-02-29T01:56:53.616177200Z", "start_time": "2024-02-29T01:56:53.225604200Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Creating RawArray with float64 data, n_channels=30, n_times=440\n", " Range : 0 ... 439 = 0.000 ... 0.399 secs\n", "Ready.\n", "Opening raw-browser...\n" ] } ], "source": [ "import numpy as np\n", "import mne\n", "import matplotlib.pyplot as plt\n", "data = np.load(\"ABMD_results3.npy\", allow_pickle=True).item()\n", "# 获取data字典中的eeg键的第一个元素\n", "sample = data['data'][0]\n", "# 创建一个列表,其中包含30个eeg1到eeg30的名称\n", "channels = [f\"eeg{i}\" for i in range(1, 31)]\n", "# 创建一个列表,其中包含30个eeg类型的元素\n", "channel_types = [\"eeg\"] * 30\n", "# 使用mne模块创建一个info对象,其中包含上面创建的channels和channel_types列表\n", "info = mne.create_info(ch_names=channels,\n", " sfreq=1100,\n", " ch_types=channel_types)\n", "# 使用mne模块创建一个RawArray对象,其中包含sample和info对象\n", "raw = mne.io.RawArray(sample, info)\n", "fig = raw.plot(start=0, duration=10, color='b', scalings='auto')\n", "# plt.show()\n", "# plt.savefig(\"ABMD_results3.png\")\n", "\n", "\n" ] }, { "cell_type": "code", "execution_count": 3, "outputs": [], "source": [], "metadata": { "collapsed": false, "ExecuteTime": { "end_time": "2024-02-29T01:48:22.905570700Z", "start_time": "2024-02-29T01:48:22.873578500Z" } }, "id": "4805d7e6a7da9fea" }, { "cell_type": "code", "execution_count": null, "outputs": [], "source": [], "metadata": { "collapsed": false }, "id": "242d359be6dc5d61" } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.6" } }, "nbformat": 4, "nbformat_minor": 5 }