|
|
|
|
import cv2
|
|
|
|
|
import os
|
|
|
|
|
import gain_face
|
|
|
|
|
from face_train import Model, Dataset
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def main():
|
|
|
|
|
judge = False
|
|
|
|
|
while True:
|
|
|
|
|
print("是否录入人脸信息(Yes or No)?,请输入英文名")
|
|
|
|
|
input_ = input()
|
|
|
|
|
if input_ == 'Yes':
|
|
|
|
|
# 员工姓名(要输入英文)
|
|
|
|
|
new_user_name = input("请输入您的姓名:")
|
|
|
|
|
print("请看摄像头!")
|
|
|
|
|
judge = True
|
|
|
|
|
# 采集员工图像的数量自己设定,越多识别准确度越高,但训练速度贼慢
|
|
|
|
|
window_name = 'Information Collection' # 图像窗口
|
|
|
|
|
camera_id = 0 # 相机的ID号
|
|
|
|
|
images_num = 200 # 采集图片数量
|
|
|
|
|
path = './FaceData/' + new_user_name # 图像保存位置
|
|
|
|
|
gain_face.CatchPICFromVideo(window_name, camera_id, images_num, path, new_user_name)
|
|
|
|
|
elif input_ == 'No':
|
|
|
|
|
break
|
|
|
|
|
else:
|
|
|
|
|
print("错误输入,请输入Yes或者No")
|
|
|
|
|
# 加载模型
|
|
|
|
|
if judge == True:
|
|
|
|
|
|
|
|
|
|
user_num = len(os.listdir('./FaceData/'))
|
|
|
|
|
|
|
|
|
|
dataset = Dataset('./FaceData/')
|
|
|
|
|
|
|
|
|
|
dataset.load()
|
|
|
|
|
|
|
|
|
|
model = Model()
|
|
|
|
|
|
|
|
|
|
# 先前添加的测试build_model()函数的代码
|
|
|
|
|
model.build_model(dataset, nb_classes=user_num)
|
|
|
|
|
|
|
|
|
|
# 测试训练函数的代码
|
|
|
|
|
model.train(dataset)
|
|
|
|
|
|
|
|
|
|
model.save_model(file_path='./model/aggregate.face.model.h5')
|
|
|
|
|
|
|
|
|
|
else:
|
|
|
|
|
model = Model()
|
|
|
|
|
|
|
|
|
|
model.load_model(file_path='./model/aggregate.face.model.h5')
|
|
|
|
|
|
|
|
|
|
# 框住人脸的矩形边框颜色
|
|
|
|
|
color = (255, 255, 255)
|
|
|
|
|
|
|
|
|
|
# 捕获指定摄像头的实时视频流
|
|
|
|
|
cap = cv2.VideoCapture(0)
|
|
|
|
|
|
|
|
|
|
# 人脸识别分类器本地存储路径
|
|
|
|
|
cascade_path = "./haarcascade_frontalface_alt2.xml"
|
|
|
|
|
|
|
|
|
|
# 循环检测识别人脸
|
|
|
|
|
|
|
|
|
|
while True:
|
|
|
|
|
ret, frame = cap.read() # 读取一帧视频
|
|
|
|
|
|
|
|
|
|
if ret is True:
|
|
|
|
|
# 图像灰化,降低计算复杂度
|
|
|
|
|
frame_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
|
|
|
|
|
else:
|
|
|
|
|
continue
|
|
|
|
|
# 使用人脸识别分类器,读入分类器
|
|
|
|
|
cascade = cv2.CascadeClassifier(cascade_path)
|
|
|
|
|
|
|
|
|
|
# 利用分类器识别出哪个区域为人脸
|
|
|
|
|
faceRects = cascade.detectMultiScale(frame_gray, scaleFactor=1.2, minNeighbors=2, minSize=(32, 32))
|
|
|
|
|
|
|
|
|
|
for (x, y, w, h) in faceRects:
|
|
|
|
|
# 截取脸部图像提交给模型识别这是谁
|
|
|
|
|
image = frame[y: y + h, x: x + w]
|
|
|
|
|
|
|
|
|
|
faceID = model.face_predict(image)
|
|
|
|
|
|
|
|
|
|
print(faceID)
|
|
|
|
|
|
|
|
|
|
cv2.rectangle(frame, (x - 10, y - 10), (x + w + 10, y + h + 10), color, thickness=1)
|
|
|
|
|
|
|
|
|
|
for i in range(len(os.listdir('./FaceData/'))):
|
|
|
|
|
|
|
|
|
|
if i == faceID:
|
|
|
|
|
# 文字提示是谁
|
|
|
|
|
cv2.putText(frame, os.listdir('./FaceData/')[i], (x + 30, y + 30), cv2.FONT_HERSHEY_SIMPLEX, 1,
|
|
|
|
|
color, 2)
|
|
|
|
|
cv2.imshow("recognition! press 'Q' to quit", frame)
|
|
|
|
|
# 等待10毫秒看是否有按键输入
|
|
|
|
|
k = cv2.waitKey(10)
|
|
|
|
|
# 如果输入q则退出循环
|
|
|
|
|
if k & 0xFF == ord('q'):
|
|
|
|
|
break
|
|
|
|
|
# 释放摄像头并销毁所有窗口
|
|
|
|
|
cap.release()
|
|
|
|
|
cv2.destroyAllWindows()
|