import cv2 import os import gain_face from face_train import Model, Dataset def main(): judge = False while True: print("是否录入人脸信息(Yes or No)?,请输入英文名") input_ = input() if input_ == 'Yes': # 员工姓名(要输入英文) new_user_name = input("请输入您的姓名:") print("请看摄像头!") judge = True # 采集员工图像的数量自己设定,越多识别准确度越高,但训练速度贼慢 window_name = 'Information Collection' # 图像窗口 camera_id = 0 # 相机的ID号 images_num = 200 # 采集图片数量 path = './FaceData/' + new_user_name # 图像保存位置 gain_face.CatchPICFromVideo(window_name, camera_id, images_num, path, new_user_name) elif input_ == 'No': break else: print("错误输入,请输入Yes或者No") # 加载模型 if judge == True: user_num = len(os.listdir('./FaceData/')) dataset = Dataset('./FaceData/') dataset.load() model = Model() # 先前添加的测试build_model()函数的代码 model.build_model(dataset, nb_classes=user_num) # 测试训练函数的代码 model.train(dataset) model.save_model(file_path='./model/aggregate.face.model.h5') else: model = Model() model.load_model(file_path='./model/aggregate.face.model.h5') # 框住人脸的矩形边框颜色 color = (255, 255, 255) # 捕获指定摄像头的实时视频流 cap = cv2.VideoCapture(0) # 人脸识别分类器本地存储路径 cascade_path = "./haarcascade_frontalface_alt2.xml" # 循环检测识别人脸 while True: ret, frame = cap.read() # 读取一帧视频 if ret is True: # 图像灰化,降低计算复杂度 frame_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) else: continue # 使用人脸识别分类器,读入分类器 cascade = cv2.CascadeClassifier(cascade_path) # 利用分类器识别出哪个区域为人脸 faceRects = cascade.detectMultiScale(frame_gray, scaleFactor=1.2, minNeighbors=2, minSize=(32, 32)) for (x, y, w, h) in faceRects: # 截取脸部图像提交给模型识别这是谁 image = frame[y: y + h, x: x + w] faceID = model.face_predict(image) print(faceID) cv2.rectangle(frame, (x - 10, y - 10), (x + w + 10, y + h + 10), color, thickness=1) for i in range(len(os.listdir('./FaceData/'))): if i == faceID: # 文字提示是谁 cv2.putText(frame, os.listdir('./FaceData/')[i], (x + 30, y + 30), cv2.FONT_HERSHEY_SIMPLEX, 1, color, 2) cv2.imshow("recognition! press 'Q' to quit", frame) # 等待10毫秒看是否有按键输入 k = cv2.waitKey(10) # 如果输入q则退出循环 if k & 0xFF == ord('q'): break # 释放摄像头并销毁所有窗口 cap.release() cv2.destroyAllWindows()