import cv2 import os import sys import numpy as np from createfold import CreateFolder def CatchPICFromVideo (window_name, camera_idx, catch_pic_num, path_name, usr_name): #camera_idx代表摄像头编号,0即为系统默认 #检查输入路径是否存在——不存在就创建 CreateFolder(path_name) cv2.namedWindow(window_name) #cap = cv2.VideoCapture('./Qianyaxuan/Qianyaxuan.mp4') cap = cv2.VideoCapture('./Wangwenhai/Wangwenhai.mp4') # 设置分辨率 #cap = cv2.VideoCapture(camera_idx) cap.set(3, 1920) cap.set(4, 1080) # 告诉OpenCV使用人脸识别分类器 classfier = cv2.CascadeClassifier("./haarcascade_frontalface_alt2.xml") #记录已拍摄的照片数目 num = 0 while True: ok, frame = cap.read() # 读取一帧数据 if not ok: break gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) #将当前桢图像转换成灰度图像 # 人脸检测,1.2和2分别为图片缩放比例和需要检测的有效点数 faceRects = classfier.detectMultiScale(gray, scaleFactor=1.2, minNeighbors=2, minSize=(32, 32)) for (x, y, w, h) in faceRects: #单独框出每一张人脸 #将当前帧保存为图片 img_name = '%s/%d.jpg' % ("./FaceData/"+usr_name, num) #保存灰度人脸图 cv2.imwrite(img_name, gray[y:y+h, x:x+w]) num += 1 #画出矩形框的时候稍微比识别的脸大一圈 cv2.rectangle(frame, (x - 10, y - 10), (x + w + 10, y + h + 10),(0, 255, 0),1) #显示当前捕捉到了多少人脸图片 font = cv2.FONT_HERSHEY_SIMPLEX cv2.putText(frame, 'num:%d' % (num), (x + 30, y + 30), font, 1, (255, 0, 255), 1) # 超过指定最大保存数量结束程序 cv2.imshow(window_name, frame) if num >= catch_pic_num: break #按键盘‘Q’中断采集 if cv2.waitKey(5) & 0xFF == ord('q'): break # 释放摄像头并销毁所有窗口 print("拍摄完成,训练中......") cap.release() cv2.destroyAllWindows()