# game.py # ------- # Licensing Information: You are free to use or extend these projects for # educational purposes provided that (1) you do not distribute or publish # solutions, (2) you retain this notice, and (3) you provide clear # attribution to UC Berkeley, including a link to http://ai.berkeley.edu. # # Attribution Information: The Pacman AI projects were developed at UC Berkeley. # The core projects and autograders were primarily created by John DeNero # (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu). # Student side autograding was added by Brad Miller, Nick Hay, and # Pieter Abbeel (pabbeel@cs.berkeley.edu). # game.py # ------- # Licensing Information: Please do not distribute or publish solutions to this # project. You are free to use and extend these projects for educational # purposes. The Pacman AI projects were developed at UC Berkeley, primarily by # John DeNero (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu). # For more info, see http://inst.eecs.berkeley.edu/~cs188/sp09/pacman.html from util import * import time, os import traceback import sys ####################### # Parts worth reading # ####################### class Agent: """ An agent must define a getAction method, but may also define the following methods which will be called if they exist: def registerInitialState(self, state): # inspects the starting state """ def __init__(self, index=0): self.index = index def getAction(self, state): """ The Agent will receive a GameState (from either {pacman, capture, sonar}.py) and must return an action from Directions.{North, South, East, West, Stop} """ raiseNotDefined() class Directions: NORTH = 'North' SOUTH = 'South' EAST = 'East' WEST = 'West' STOP = 'Stop' LEFT = {NORTH: WEST, SOUTH: EAST, EAST: NORTH, WEST: SOUTH, STOP: STOP} RIGHT = dict([(y,x) for x, y in LEFT.items()]) REVERSE = {NORTH: SOUTH, SOUTH: NORTH, EAST: WEST, WEST: EAST, STOP: STOP} class Configuration: """ A Configuration holds the (x,y) coordinate of a character, along with its traveling direction. The convention for positions, like a graph, is that (0,0) is the lower left corner, x increases horizontally and y increases vertically. Therefore, north is the direction of increasing y, or (0,1). """ def __init__(self, pos, direction): self.pos = pos self.direction = direction def getPosition(self): return (self.pos) def getDirection(self): return self.direction def isInteger(self): x,y = self.pos return x == int(x) and y == int(y) def __eq__(self, other): if other == None: return False return (self.pos == other.pos and self.direction == other.direction) def __hash__(self): x = hash(self.pos) y = hash(self.direction) return hash(x + 13 * y) def __str__(self): return "(x,y)="+str(self.pos)+", "+str(self.direction) def generateSuccessor(self, vector): """ Generates a new configuration reached by translating the current configuration by the action vector. This is a low-level call and does not attempt to respect the legality of the movement. Actions are movement vectors. """ x, y= self.pos dx, dy = vector direction = Actions.vectorToDirection(vector) if direction == Directions.STOP: direction = self.direction # There is no stop direction return Configuration((x + dx, y+dy), direction) class AgentState: """ AgentStates hold the state of an agent (configuration, speed, scared, etc). """ def __init__( self, startConfiguration, isPacman ): self.start = startConfiguration self.configuration = startConfiguration self.isPacman = isPacman self.scaredTimer = 0 self.numCarrying = 0 self.numReturned = 0 def __str__( self ): if self.isPacman: return "Pacman: " + str( self.configuration ) else: return "Ghost: " + str( self.configuration ) def __eq__( self, other ): if other == None: return False return self.configuration == other.configuration and self.scaredTimer == other.scaredTimer def __hash__(self): return hash(hash(self.configuration) + 13 * hash(self.scaredTimer)) def copy( self ): state = AgentState( self.start, self.isPacman ) state.configuration = self.configuration state.scaredTimer = self.scaredTimer state.numCarrying = self.numCarrying state.numReturned = self.numReturned return state def getPosition(self): if self.configuration == None: return None return self.configuration.getPosition() def getDirection(self): return self.configuration.getDirection() class Grid: """ A 2-dimensional array of objects backed by a list of lists. Data is accessed via grid[x][y] where (x,y) are positions on a Pacman map with x horizontal, y vertical and the origin (0,0) in the bottom left corner. The __str__ method constructs an output that is oriented like a pacman board. """ def __init__(self, width, height, initialValue=False, bitRepresentation=None): if initialValue not in [False, True]: raise Exception('Grids can only contain booleans') self.CELLS_PER_INT = 30 self.width = width self.height = height self.data = [[initialValue for y in range(height)] for x in range(width)] if bitRepresentation: self._unpackBits(bitRepresentation) def __getitem__(self, i): return self.data[i] def __setitem__(self, key, item): self.data[key] = item def __str__(self): out = [[str(self.data[x][y])[0] for x in range(self.width)] for y in range(self.height)] out.reverse() return '\n'.join([''.join(x) for x in out]) def __eq__(self, other): if other == None: return False return self.data == other.data def __hash__(self): # return hash(str(self)) base = 1 h = 0 for l in self.data: for i in l: if i: h += base base *= 2 return hash(h) def copy(self): g = Grid(self.width, self.height) g.data = [x[:] for x in self.data] return g def deepCopy(self): return self.copy() def shallowCopy(self): g = Grid(self.width, self.height) g.data = self.data return g def count(self, item =True ): return sum([x.count(item) for x in self.data]) def asList(self, key = True): list = [] for x in range(self.width): for y in range(self.height): if self[x][y] == key: list.append( (x,y) ) return list def packBits(self): """ Returns an efficient int list representation (width, height, bitPackedInts...) """ bits = [self.width, self.height] currentInt = 0 for i in range(self.height * self.width): bit = self.CELLS_PER_INT - (i % self.CELLS_PER_INT) - 1 x, y = self._cellIndexToPosition(i) if self[x][y]: currentInt += 2 ** bit if (i + 1) % self.CELLS_PER_INT == 0: bits.append(currentInt) currentInt = 0 bits.append(currentInt) return tuple(bits) def _cellIndexToPosition(self, index): x = index // self.height y = index % self.height return x, y def _unpackBits(self, bits): """ Fills in data from a bit-level representation """ cell = 0 for packed in bits: for bit in self._unpackInt(packed, self.CELLS_PER_INT): if cell == self.width * self.height: break x, y = self._cellIndexToPosition(cell) self[x][y] = bit cell += 1 def _unpackInt(self, packed, size): bools = [] if packed < 0: raise ValueError("must be a positive integer") for i in range(size): n = 2 ** (self.CELLS_PER_INT - i - 1) if packed >= n: bools.append(True) packed -= n else: bools.append(False) return bools def reconstituteGrid(bitRep): if type(bitRep) is not type((1,2)): return bitRep width, height = bitRep[:2] return Grid(width, height, bitRepresentation= bitRep[2:]) #################################### # Parts you shouldn't have to read # #################################### class Actions: """ A collection of static methods for manipulating move actions. """ # Directions _directions = {Directions.NORTH: (0, 1), Directions.SOUTH: (0, -1), Directions.EAST: (1, 0), Directions.WEST: (-1, 0), Directions.STOP: (0, 0)} _directionsAsList = _directions.items() TOLERANCE = .001 def reverseDirection(action): if action == Directions.NORTH: return Directions.SOUTH if action == Directions.SOUTH: return Directions.NORTH if action == Directions.EAST: return Directions.WEST if action == Directions.WEST: return Directions.EAST return action reverseDirection = staticmethod(reverseDirection) def vectorToDirection(vector): dx, dy = vector if dy > 0: return Directions.NORTH if dy < 0: return Directions.SOUTH if dx < 0: return Directions.WEST if dx > 0: return Directions.EAST return Directions.STOP vectorToDirection = staticmethod(vectorToDirection) def directionToVector(direction, speed = 1.0): dx, dy = Actions._directions[direction] return (dx * speed, dy * speed) directionToVector = staticmethod(directionToVector) def getPossibleActions(config, walls): possible = [] x, y = config.pos x_int, y_int = int(x + 0.5), int(y + 0.5) # In between grid points, all agents must continue straight if (abs(x - x_int) + abs(y - y_int) > Actions.TOLERANCE): return [config.getDirection()] for dir, vec in Actions._directionsAsList: dx, dy = vec next_y = y_int + dy next_x = x_int + dx if not walls[next_x][next_y]: possible.append(dir) return possible getPossibleActions = staticmethod(getPossibleActions) def getLegalNeighbors(position, walls): x,y = position x_int, y_int = int(x + 0.5), int(y + 0.5) neighbors = [] for dir, vec in Actions._directionsAsList: dx, dy = vec next_x = x_int + dx if next_x < 0 or next_x == walls.width: continue next_y = y_int + dy if next_y < 0 or next_y == walls.height: continue if not walls[next_x][next_y]: neighbors.append((next_x, next_y)) return neighbors getLegalNeighbors = staticmethod(getLegalNeighbors) def getSuccessor(position, action): dx, dy = Actions.directionToVector(action) x, y = position return (x + dx, y + dy) getSuccessor = staticmethod(getSuccessor) class GameStateData: """ """ def __init__( self, prevState = None ): """ Generates a new data packet by copying information from its predecessor. """ if prevState != None: self.food = prevState.food.shallowCopy() self.capsules = prevState.capsules[:] self.agentStates = self.copyAgentStates( prevState.agentStates ) self.layout = prevState.layout self._eaten = prevState._eaten self.score = prevState.score self._foodEaten = None self._foodAdded = None self._capsuleEaten = None self._agentMoved = None self._lose = False self._win = False self.scoreChange = 0 def deepCopy( self ): state = GameStateData( self ) state.food = self.food.deepCopy() state.layout = self.layout.deepCopy() state._agentMoved = self._agentMoved state._foodEaten = self._foodEaten state._foodAdded = self._foodAdded state._capsuleEaten = self._capsuleEaten return state def copyAgentStates( self, agentStates ): copiedStates = [] for agentState in agentStates: copiedStates.append( agentState.copy() ) return copiedStates def __eq__( self, other ): """ Allows two states to be compared. """ if other == None: return False # TODO Check for type of other if not self.agentStates == other.agentStates: return False if not self.food == other.food: return False if not self.capsules == other.capsules: return False if not self.score == other.score: return False return True def __hash__( self ): """ Allows states to be keys of dictionaries. """ for i, state in enumerate( self.agentStates ): try: int(hash(state)) except TypeError as e: print(e) #hash(state) return int((hash(tuple(self.agentStates)) + 13*hash(self.food) + 113* hash(tuple(self.capsules)) + 7 * hash(self.score)) % 1048575 ) def __str__( self ): width, height = self.layout.width, self.layout.height map = Grid(width, height) if type(self.food) == type((1,2)): self.food = reconstituteGrid(self.food) for x in range(width): for y in range(height): food, walls = self.food, self.layout.walls map[x][y] = self._foodWallStr(food[x][y], walls[x][y]) for agentState in self.agentStates: if agentState == None: continue if agentState.configuration == None: continue x,y = [int( i ) for i in nearestPoint( agentState.configuration.pos )] agent_dir = agentState.configuration.direction if agentState.isPacman: map[x][y] = self._pacStr( agent_dir ) else: map[x][y] = self._ghostStr( agent_dir ) for x, y in self.capsules: map[x][y] = 'o' return str(map) + ("\nScore: %d\n" % self.score) def _foodWallStr( self, hasFood, hasWall ): if hasFood: return '.' elif hasWall: return '%' else: return ' ' def _pacStr( self, dir ): if dir == Directions.NORTH: return 'v' if dir == Directions.SOUTH: return '^' if dir == Directions.WEST: return '>' return '<' def _ghostStr( self, dir ): return 'G' if dir == Directions.NORTH: return 'M' if dir == Directions.SOUTH: return 'W' if dir == Directions.WEST: return '3' return 'E' def initialize( self, layout, numGhostAgents ): """ Creates an initial game state from a layout array (see layout.py). """ self.food = layout.food.copy() #self.capsules = [] self.capsules = layout.capsules[:] self.layout = layout self.score = 0 self.scoreChange = 0 self.agentStates = [] numGhosts = 0 for isPacman, pos in layout.agentPositions: if not isPacman: if numGhosts == numGhostAgents: continue # Max ghosts reached already else: numGhosts += 1 self.agentStates.append( AgentState( Configuration( pos, Directions.STOP), isPacman) ) self._eaten = [False for a in self.agentStates] try: import boinc _BOINC_ENABLED = True except: _BOINC_ENABLED = False class Game: """ The Game manages the control flow, soliciting actions from agents. """ def __init__( self, agents, display, rules, startingIndex=0, muteAgents=False, catchExceptions=False ): self.agentCrashed = False self.agents = agents self.display = display self.rules = rules self.startingIndex = startingIndex self.gameOver = False self.muteAgents = muteAgents self.catchExceptions = catchExceptions self.moveHistory = [] self.totalAgentTimes = [0 for agent in agents] self.totalAgentTimeWarnings = [0 for agent in agents] self.agentTimeout = False import io self.agentOutput = [io.StringIO() for agent in agents] def getProgress(self): if self.gameOver: return 1.0 else: return self.rules.getProgress(self) def _agentCrash( self, agentIndex, quiet=False): "Helper method for handling agent crashes" if not quiet: traceback.print_exc() self.gameOver = True self.agentCrashed = True self.rules.agentCrash(self, agentIndex) OLD_STDOUT = None OLD_STDERR = None def mute(self, agentIndex): if not self.muteAgents: return global OLD_STDOUT, OLD_STDERR import io OLD_STDOUT = sys.stdout OLD_STDERR = sys.stderr sys.stdout = self.agentOutput[agentIndex] sys.stderr = self.agentOutput[agentIndex] def unmute(self): if not self.muteAgents: return global OLD_STDOUT, OLD_STDERR # Revert stdout/stderr to originals sys.stdout = OLD_STDOUT sys.stderr = OLD_STDERR def run( self ): """ Main control loop for game play. """ self.display.initialize(self.state.data) self.numMoves = 0 ###self.display.initialize(self.state.makeObservation(1).data) # inform learning agents of the game start for i in range(len(self.agents)): agent = self.agents[i] if not agent: self.mute(i) # this is a null agent, meaning it failed to load # the other team wins print("Agent %d failed to load" % i, file=sys.stderr) self.unmute() self._agentCrash(i, quiet=True) return if ("registerInitialState" in dir(agent)): self.mute(i) if self.catchExceptions: try: timed_func = TimeoutFunction(agent.registerInitialState, int(self.rules.getMaxStartupTime(i))) try: start_time = time.time() timed_func(self.state.deepCopy()) time_taken = time.time() - start_time self.totalAgentTimes[i] += time_taken except TimeoutFunctionException: print("Agent %d ran out of time on startup!" % i, file=sys.stderr) self.unmute() self.agentTimeout = True self._agentCrash(i, quiet=True) return except Exception as data: self._agentCrash(i, quiet=False) self.unmute() return else: agent.registerInitialState(self.state.deepCopy()) ## TODO: could this exceed the total time self.unmute() agentIndex = self.startingIndex numAgents = len( self.agents ) while not self.gameOver: # Fetch the next agent agent = self.agents[agentIndex] move_time = 0 skip_action = False # Generate an observation of the state if 'observationFunction' in dir( agent ): self.mute(agentIndex) if self.catchExceptions: try: timed_func = TimeoutFunction(agent.observationFunction, int(self.rules.getMoveTimeout(agentIndex))) try: start_time = time.time() observation = timed_func(self.state.deepCopy()) except TimeoutFunctionException: skip_action = True move_time += time.time() - start_time self.unmute() except Exception as data: self._agentCrash(agentIndex, quiet=False) self.unmute() return else: observation = agent.observationFunction(self.state.deepCopy()) self.unmute() else: observation = self.state.deepCopy() # Solicit an action action = None self.mute(agentIndex) if self.catchExceptions: try: timed_func = TimeoutFunction(agent.getAction, int(self.rules.getMoveTimeout(agentIndex)) - int(move_time)) try: start_time = time.time() if skip_action: raise TimeoutFunctionException() action = timed_func( observation ) except TimeoutFunctionException: print("Agent %d timed out on a single move!" % agentIndex, file=sys.stderr) self.agentTimeout = True self._agentCrash(agentIndex, quiet=True) self.unmute() return move_time += time.time() - start_time if move_time > self.rules.getMoveWarningTime(agentIndex): self.totalAgentTimeWarnings[agentIndex] += 1 print("Agent %d took too long to make a move! This is warning %d" % (agentIndex, self.totalAgentTimeWarnings[agentIndex]), file=sys.stderr) if self.totalAgentTimeWarnings[agentIndex] > self.rules.getMaxTimeWarnings(agentIndex): print("Agent %d exceeded the maximum number of warnings: %d" % (agentIndex, self.totalAgentTimeWarnings[agentIndex]), file=sys.stderr) self.agentTimeout = True self._agentCrash(agentIndex, quiet=True) self.unmute() return self.totalAgentTimes[agentIndex] += move_time #print("Agent: %d, time: %f, total: %f" % (agentIndex, move_time, self.totalAgentTimes[agentIndex])) if self.totalAgentTimes[agentIndex] > self.rules.getMaxTotalTime(agentIndex): print("Agent %d ran out of time! (time: %1.2f)" % (agentIndex, self.totalAgentTimes[agentIndex]), file=sys.stderr) self.agentTimeout = True self._agentCrash(agentIndex, quiet=True) self.unmute() return self.unmute() except Exception as data: self._agentCrash(agentIndex) self.unmute() return else: action = agent.getAction(observation) self.unmute() # Execute the action self.moveHistory.append( (agentIndex, action) ) if self.catchExceptions: try: self.state = self.state.generateSuccessor( agentIndex, action ) except Exception as data: self.mute(agentIndex) self._agentCrash(agentIndex) self.unmute() return else: self.state = self.state.generateSuccessor( agentIndex, action ) # Change the display self.display.update( self.state.data ) ###idx = agentIndex - agentIndex % 2 + 1 ###self.display.update( self.state.makeObservation(idx).data ) # Allow for game specific conditions (winning, losing, etc.) self.rules.process(self.state, self) # Track progress if agentIndex == numAgents + 1: self.numMoves += 1 # Next agent agentIndex = ( agentIndex + 1 ) % numAgents if _BOINC_ENABLED: boinc.set_fraction_done(self.getProgress()) # inform a learning agent of the game result for agentIndex, agent in enumerate(self.agents): if "final" in dir( agent ) : try: self.mute(agentIndex) agent.final( self.state ) self.unmute() except Exception as data: if not self.catchExceptions: raise data self._agentCrash(agentIndex) self.unmute() return self.display.finish()