You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

579 lines
24 KiB

# multiagentTestClasses.py
# ------------------------
# Licensing Information: You are free to use or extend these projects for
# educational purposes provided that (1) you do not distribute or publish
# solutions, (2) you retain this notice, and (3) you provide clear
# attribution to UC Berkeley, including a link to http://ai.berkeley.edu.
#
# Attribution Information: The Pacman AI projects were developed at UC Berkeley.
# The core projects and autograders were primarily created by John DeNero
# (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu).
# Student side autograding was added by Brad Miller, Nick Hay, and
# Pieter Abbeel (pabbeel@cs.berkeley.edu).
# A minimax tree which interfaces like gameState
# state.getNumAgents()
# state.isWin()
# state.isLose()
# state.generateSuccessor(agentIndex, action)
# state.getScore()
# used by multiAgents.scoreEvaluationFunction, which is the default
#
import testClasses
import json
from collections import defaultdict
from pprint import PrettyPrinter
pp = PrettyPrinter()
from game import Agent
from pacman import GameState
from ghostAgents import RandomGhost, DirectionalGhost
import random
import math
import traceback
import sys
import os
import layout
import pacman
import autograder
# import grading
VERBOSE = False
class MultiagentTreeState(object):
def __init__(self, problem, state):
self.problem = problem
self.state = state
def generateSuccessor(self, agentIndex, action):
if VERBOSE:
print("generateSuccessor(%s, %s, %s) -> %s" % (self.state, agentIndex,
action, self.problem.stateToSuccessorMap[self.state][action]))
successor = self.problem.stateToSuccessorMap[self.state][action]
self.problem.generatedStates.add(successor)
return MultiagentTreeState(self.problem, successor)
def getScore(self):
if VERBOSE:
print("getScore(%s) -> %s" %
(self.state, self.problem.evaluation[self.state]))
if self.state not in self.problem.evaluation:
raise Exception(
'getScore() called on non-terminal state or before maximum depth achieved.')
return float(self.problem.evaluation[self.state])
def getLegalActions(self, agentIndex=0):
if VERBOSE:
print("getLegalActions(%s) -> %s" %
(self.state, self.problem.stateToActions[self.state]))
# if len(self.problem.stateToActions[self.state]) == 0:
# print "WARNING: getLegalActions called on leaf state %s" % (self.state,)
return list(self.problem.stateToActions[self.state])
def isWin(self):
if VERBOSE:
print("isWin(%s) -> %s" %
(self.state, self.state in self.problem.winStates))
return self.state in self.problem.winStates
def isLose(self):
if VERBOSE:
print("isLose(%s) -> %s" %
(self.state, self.state in self.problem.loseStates))
return self.state in self.problem.loseStates
def getNumAgents(self):
if VERBOSE:
print("getNumAgents(%s) -> %s" %
(self.state, self.problem.numAgents))
return self.problem.numAgents
class MultiagentTreeProblem(object):
def __init__(self, numAgents, startState, winStates, loseStates, successors, evaluation):
self.startState = MultiagentTreeState(self, startState)
self.numAgents = numAgents
self.winStates = winStates
self.loseStates = loseStates
self.evaluation = evaluation
self.successors = successors
self.reset()
self.stateToSuccessorMap = defaultdict(dict)
self.stateToActions = defaultdict(list)
for state, action, nextState in successors:
self.stateToActions[state].append(action)
self.stateToSuccessorMap[state][action] = nextState
def reset(self):
self.generatedStates = set([self.startState.state])
def parseTreeProblem(testDict):
numAgents = int(testDict["num_agents"])
startState = testDict["start_state"]
winStates = set(testDict["win_states"].split(" "))
loseStates = set(testDict["lose_states"].split(" "))
successors = []
evaluation = {}
for line in testDict["evaluation"].split('\n'):
tokens = line.split()
if len(tokens) == 2:
state, value = tokens
evaluation[state] = float(value)
else:
raise Exception("[parseTree] Bad evaluation line: |%s|" % (line,))
for line in testDict["successors"].split('\n'):
tokens = line.split()
if len(tokens) == 3:
state, action, nextState = tokens
successors.append((state, action, nextState))
else:
raise Exception("[parseTree] Bad successor line: |%s|" % (line,))
return MultiagentTreeProblem(numAgents, startState, winStates, loseStates, successors, evaluation)
def run(lay, layName, pac, ghosts, disp, nGames=1, name='games'):
"""
Runs a few games and outputs their statistics.
"""
starttime = time.time()
print('*** Running %s on' % name, layName, '%d time(s).' % nGames)
games = pacman.runGames(lay, pac, ghosts, disp,
nGames, False, catchExceptions=True, timeout=120)
print('*** Finished running %s on' % name, layName,
'after %d seconds.' % (time.time() - starttime))
stats = {'time': time.time() - starttime, 'wins': [g.state.isWin() for g in games].count(True), 'games': games, 'scores': [g.state.getScore() for g in games],
'timeouts': [g.agentTimeout for g in games].count(True), 'crashes': [g.agentCrashed for g in games].count(True)}
print('*** Won %d out of %d games. Average score: %f ***' %
(stats['wins'], len(games), sum(stats['scores']) * 1.0 / len(games)))
return stats
class GradingAgent(Agent):
def __init__(self, seed, studentAgent, optimalActions, altDepthActions, partialPlyBugActions):
# save student agent and actions of refernce agents
self.studentAgent = studentAgent
self.optimalActions = optimalActions
self.altDepthActions = altDepthActions
self.partialPlyBugActions = partialPlyBugActions
# create fields for storing specific wrong actions
self.suboptimalMoves = []
self.wrongStatesExplored = -1
# boolean vectors represent types of implementation the student could have
self.actionsConsistentWithOptimal = [
True for i in range(len(optimalActions[0]))]
self.actionsConsistentWithAlternativeDepth = [
True for i in range(len(altDepthActions[0]))]
self.actionsConsistentWithPartialPlyBug = [
True for i in range(len(partialPlyBugActions[0]))]
# keep track of elapsed moves
self.stepCount = 0
self.seed = seed
def registerInitialState(self, state):
if 'registerInitialState' in dir(self.studentAgent):
self.studentAgent.registerInitialState(state)
random.seed(self.seed)
def getAction(self, state):
GameState.getAndResetExplored()
studentAction = (self.studentAgent.getAction(state),
len(GameState.getAndResetExplored()))
optimalActions = self.optimalActions[self.stepCount]
altDepthActions = self.altDepthActions[self.stepCount]
partialPlyBugActions = self.partialPlyBugActions[self.stepCount]
studentOptimalAction = False
curRightStatesExplored = False
for i in range(len(optimalActions)):
if studentAction[0] in optimalActions[i][0]:
studentOptimalAction = True
else:
self.actionsConsistentWithOptimal[i] = False
if studentAction[1] == int(optimalActions[i][1]):
curRightStatesExplored = True
if not curRightStatesExplored and self.wrongStatesExplored < 0:
self.wrongStatesExplored = 1
for i in range(len(altDepthActions)):
if studentAction[0] not in altDepthActions[i]:
self.actionsConsistentWithAlternativeDepth[i] = False
for i in range(len(partialPlyBugActions)):
if studentAction[0] not in partialPlyBugActions[i]:
self.actionsConsistentWithPartialPlyBug[i] = False
if not studentOptimalAction:
self.suboptimalMoves.append(
(state, studentAction[0], optimalActions[0][0][0]))
self.stepCount += 1
random.seed(self.seed + self.stepCount)
return optimalActions[0][0][0]
def getSuboptimalMoves(self):
return self.suboptimalMoves
def getWrongStatesExplored(self):
return self.wrongStatesExplored
def checkFailure(self):
"""
Return +n if have n suboptimal moves.
Return -1 if have only off by one depth moves.
Return 0 otherwise.
"""
if self.wrongStatesExplored > 0:
return -3
if self.actionsConsistentWithOptimal.count(True) > 0:
return 0
elif self.actionsConsistentWithPartialPlyBug.count(True) > 0:
return -2
elif self.actionsConsistentWithAlternativeDepth.count(True) > 0:
return -1
else:
return len(self.suboptimalMoves)
class PolyAgent(Agent):
def __init__(self, seed, multiAgents, ourPacOptions, depth):
# prepare our pacman agents
solutionAgents, alternativeDepthAgents, partialPlyBugAgents = self.construct_our_pacs(
multiAgents, ourPacOptions)
for p in solutionAgents:
p.depth = depth
for p in partialPlyBugAgents:
p.depth = depth
for p in alternativeDepthAgents[:2]:
p.depth = max(1, depth - 1)
for p in alternativeDepthAgents[2:]:
p.depth = depth + 1
self.solutionAgents = solutionAgents
self.alternativeDepthAgents = alternativeDepthAgents
self.partialPlyBugAgents = partialPlyBugAgents
# prepare fields for storing the results
self.optimalActionLists = []
self.alternativeDepthLists = []
self.partialPlyBugLists = []
self.seed = seed
self.stepCount = 0
def select(self, list, indices):
"""
Return a sublist of elements given by indices in list.
"""
return [list[i] for i in indices]
def construct_our_pacs(self, multiAgents, keyword_dict):
pacs_without_stop = [multiAgents.StaffMultiAgentSearchAgent(
**keyword_dict) for i in range(3)]
keyword_dict['keepStop'] = 'True'
pacs_with_stop = [multiAgents.StaffMultiAgentSearchAgent(
**keyword_dict) for i in range(3)]
keyword_dict['usePartialPlyBug'] = 'True'
partial_ply_bug_pacs = [
multiAgents.StaffMultiAgentSearchAgent(**keyword_dict)]
keyword_dict['keepStop'] = 'False'
partial_ply_bug_pacs = partial_ply_bug_pacs + \
[multiAgents.StaffMultiAgentSearchAgent(**keyword_dict)]
for pac in pacs_with_stop + pacs_without_stop + partial_ply_bug_pacs:
pac.verbose = False
ourpac = [pacs_with_stop[0], pacs_without_stop[0]]
alternative_depth_pacs = self.select(
pacs_with_stop + pacs_without_stop, [1, 4, 2, 5])
return (ourpac, alternative_depth_pacs, partial_ply_bug_pacs)
def registerInitialState(self, state):
for agent in self.solutionAgents + self.alternativeDepthAgents:
if 'registerInitialState' in dir(agent):
agent.registerInitialState(state)
random.seed(self.seed)
def getAction(self, state):
# survey agents
GameState.getAndResetExplored()
optimalActionLists = []
for agent in self.solutionAgents:
optimalActionLists.append((agent.getBestPacmanActions(
state)[0], len(GameState.getAndResetExplored())))
alternativeDepthLists = [agent.getBestPacmanActions(
state)[0] for agent in self.alternativeDepthAgents]
partialPlyBugLists = [agent.getBestPacmanActions(
state)[0] for agent in self.partialPlyBugAgents]
# record responses
self.optimalActionLists.append(optimalActionLists)
self.alternativeDepthLists.append(alternativeDepthLists)
self.partialPlyBugLists.append(partialPlyBugLists)
self.stepCount += 1
random.seed(self.seed + self.stepCount)
return optimalActionLists[0][0][0]
def getTraces(self):
# return traces from individual agents
return (self.optimalActionLists, self.alternativeDepthLists, self.partialPlyBugLists)
class PacmanGameTreeTest(testClasses.TestCase):
def __init__(self, question, testDict):
super(PacmanGameTreeTest, self).__init__(question, testDict)
self.seed = int(self.testDict['seed'])
self.alg = self.testDict['alg']
self.layout_text = self.testDict['layout']
self.layout_name = self.testDict['layoutName']
self.depth = int(self.testDict['depth'])
self.max_points = int(self.testDict['max_points'])
def execute(self, grades, moduleDict, solutionDict):
# load student code and staff code solutions
multiAgents = moduleDict['multiAgents']
studentAgent = getattr(multiAgents, self.alg)(depth=self.depth)
allActions = [json.loads(x)
for x in solutionDict['optimalActions'].split('\n')]
altDepthActions = [json.loads(
x) for x in solutionDict['altDepthActions'].split('\n')]
partialPlyBugActions = [json.loads(
x) for x in solutionDict['partialPlyBugActions'].split('\n')]
# set up game state and play a game
random.seed(self.seed)
lay = layout.Layout([l.strip() for l in self.layout_text.split('\n')])
pac = GradingAgent(self.seed, studentAgent, allActions,
altDepthActions, partialPlyBugActions)
# check return codes and assign grades
disp = self.question.getDisplay()
stats = run(lay, self.layout_name, pac, [DirectionalGhost(
i + 1) for i in range(2)], disp, name=self.alg)
if stats['timeouts'] > 0:
self.addMessage('Agent timed out on smallClassic. No credit')
return self.testFail(grades)
if stats['crashes'] > 0:
self.addMessage('Agent crashed on smallClassic. No credit')
return self.testFail(grades)
code = pac.checkFailure()
if code == 0:
return self.testPass(grades)
elif code == -3:
if pac.getWrongStatesExplored() >= 0:
self.addMessage('Bug: Wrong number of states expanded.')
return self.testFail(grades)
else:
return self.testPass(grades)
elif code == -2:
self.addMessage('Bug: Partial Ply Bug')
return self.testFail(grades)
elif code == -1:
self.addMessage('Bug: Search depth off by 1')
return self.testFail(grades)
elif code > 0:
moves = pac.getSuboptimalMoves()
state, studentMove, optMove = random.choice(moves)
self.addMessage('Bug: Suboptimal moves')
self.addMessage('State:%s\nStudent Move:%s\nOptimal Move:%s' % (
state, studentMove, optMove))
return self.testFail(grades)
def writeList(self, handle, name, list):
handle.write('%s: """\n' % name)
for l in list:
handle.write('%s\n' % json.dumps(l))
handle.write('"""\n')
def writeSolution(self, moduleDict, filePath):
# load module, set seed, create ghosts and macman, run game
multiAgents = moduleDict['multiAgents']
random.seed(self.seed)
lay = layout.Layout([l.strip() for l in self.layout_text.split('\n')])
if self.alg == 'ExpectimaxAgent':
ourPacOptions = {'expectimax': 'True'}
elif self.alg == 'AlphaBetaAgent':
ourPacOptions = {'alphabeta': 'True'}
else:
ourPacOptions = {}
pac = PolyAgent(self.seed, multiAgents, ourPacOptions, self.depth)
disp = self.question.getDisplay()
run(lay, self.layout_name, pac, [DirectionalGhost(
i + 1) for i in range(2)], disp, name=self.alg)
(optimalActions, altDepthActions, partialPlyBugActions) = pac.getTraces()
# recover traces and record to file
handle = open(filePath, 'w')
self.writeList(handle, 'optimalActions', optimalActions)
self.writeList(handle, 'altDepthActions', altDepthActions)
self.writeList(handle, 'partialPlyBugActions', partialPlyBugActions)
handle.close()
class GraphGameTreeTest(testClasses.TestCase):
def __init__(self, question, testDict):
super(GraphGameTreeTest, self).__init__(question, testDict)
self.problem = parseTreeProblem(testDict)
self.alg = self.testDict['alg']
self.diagram = self.testDict['diagram'].split('\n')
self.depth = int(self.testDict['depth'])
def solveProblem(self, multiAgents):
self.problem.reset()
studentAgent = getattr(multiAgents, self.alg)(depth=self.depth)
action = studentAgent.getAction(self.problem.startState)
generated = self.problem.generatedStates
return action, " ".join([str(s) for s in sorted(generated)])
def addDiagram(self):
self.addMessage('Tree:')
for line in self.diagram:
self.addMessage(line)
def execute(self, grades, moduleDict, solutionDict):
multiAgents = moduleDict['multiAgents']
goldAction = solutionDict['action']
goldGenerated = solutionDict['generated']
action, generated = self.solveProblem(multiAgents)
fail = False
if action != goldAction:
self.addMessage('Incorrect move for depth=%s' % (self.depth,))
self.addMessage(
' Student move: %s\n Optimal move: %s' % (action, goldAction))
fail = True
if generated != goldGenerated:
self.addMessage(
'Incorrect generated nodes for depth=%s' % (self.depth,))
self.addMessage(' Student generated nodes: %s\n Correct generated nodes: %s' % (
generated, goldGenerated))
fail = True
if fail:
self.addDiagram()
return self.testFail(grades)
else:
return self.testPass(grades)
def writeSolution(self, moduleDict, filePath):
multiAgents = moduleDict['multiAgents']
action, generated = self.solveProblem(multiAgents)
with open(filePath, 'w') as handle:
handle.write('# This is the solution file for %s.\n' % self.path)
handle.write('action: "%s"\n' % (action,))
handle.write('generated: "%s"\n' % (generated,))
return True
import time
from util import TimeoutFunction
class EvalAgentTest(testClasses.TestCase):
def __init__(self, question, testDict):
super(EvalAgentTest, self).__init__(question, testDict)
self.layoutName = testDict['layoutName']
self.agentName = testDict['agentName']
self.ghosts = eval(testDict['ghosts'])
self.maxTime = int(testDict['maxTime'])
self.seed = int(testDict['randomSeed'])
self.numGames = int(testDict['numGames'])
self.scoreMinimum = int(
testDict['scoreMinimum']) if 'scoreMinimum' in testDict else None
self.nonTimeoutMinimum = int(
testDict['nonTimeoutMinimum']) if 'nonTimeoutMinimum' in testDict else None
self.winsMinimum = int(
testDict['winsMinimum']) if 'winsMinimum' in testDict else None
self.scoreThresholds = [int(s) for s in testDict.get(
'scoreThresholds', '').split()]
self.nonTimeoutThresholds = [int(s) for s in testDict.get(
'nonTimeoutThresholds', '').split()]
self.winsThresholds = [int(s) for s in testDict.get(
'winsThresholds', '').split()]
self.maxPoints = sum([len(t) for t in [
self.scoreThresholds, self.nonTimeoutThresholds, self.winsThresholds]])
self.agentArgs = testDict.get('agentArgs', '')
def execute(self, grades, moduleDict, solutionDict):
startTime = time.time()
agentType = getattr(moduleDict['multiAgents'], self.agentName)
agentOpts = pacman.parseAgentArgs(
self.agentArgs) if self.agentArgs != '' else {}
agent = agentType(**agentOpts)
lay = layout.getLayout(self.layoutName, 3)
disp = self.question.getDisplay()
random.seed(self.seed)
games = pacman.runGames(lay, agent, self.ghosts, disp, self.numGames,
False, catchExceptions=True, timeout=self.maxTime)
totalTime = time.time() - startTime
stats = {'time': totalTime, 'wins': [g.state.isWin() for g in games].count(True),
'games': games, 'scores': [g.state.getScore() for g in games],
'timeouts': [g.agentTimeout for g in games].count(True), 'crashes': [g.agentCrashed for g in games].count(True)}
averageScore = sum(stats['scores']) / float(len(stats['scores']))
nonTimeouts = self.numGames - stats['timeouts']
wins = stats['wins']
def gradeThreshold(value, minimum, thresholds, name):
points = 0
passed = (minimum == None) or (value >= minimum)
if passed:
for t in thresholds:
if value >= t:
points += 1
return (passed, points, value, minimum, thresholds, name)
results = [gradeThreshold(averageScore, self.scoreMinimum, self.scoreThresholds, "average score"),
gradeThreshold(nonTimeouts, self.nonTimeoutMinimum,
self.nonTimeoutThresholds, "games not timed out"),
gradeThreshold(wins, self.winsMinimum, self.winsThresholds, "wins")]
totalPoints = 0
for passed, points, value, minimum, thresholds, name in results:
if minimum == None and len(thresholds) == 0:
continue
# print passed, points, value, minimum, thresholds, name
totalPoints += points
if not passed:
assert points == 0
self.addMessage(
"%s %s (fail: below minimum value %s)" % (value, name, minimum))
else:
self.addMessage("%s %s (%s of %s points)" %
(value, name, points, len(thresholds)))
if minimum != None:
self.addMessage(" Grading scheme:")
self.addMessage(" < %s: fail" % (minimum,))
if len(thresholds) == 0 or minimum != thresholds[0]:
self.addMessage(" >= %s: 0 points" % (minimum,))
for idx, threshold in enumerate(thresholds):
self.addMessage(" >= %s: %s points" %
(threshold, idx+1))
elif len(thresholds) > 0:
self.addMessage(" Grading scheme:")
self.addMessage(" < %s: 0 points" % (thresholds[0],))
for idx, threshold in enumerate(thresholds):
self.addMessage(" >= %s: %s points" %
(threshold, idx+1))
if any([not passed for passed, _, _, _, _, _ in results]):
totalPoints = 0
return self.testPartial(grades, totalPoints, self.maxPoints)
def writeSolution(self, moduleDict, filePath):
handle = open(filePath, 'w')
handle.write('# This is the solution file for %s.\n' % self.path)
handle.write('# File intentionally blank.\n')
handle.close()
return True